ONEedge.io

A Software-defined Edge Computing Solution

D3.3. Software Report - ¢

Software Report
Version 1.0

3 November 2021

Abstract

This report summarizes the design of the technology components that have been implemented
as part of the Third Innovation Cycle (M17-M23), as well as the full details of each of the
software requirements that are being addressed as part of the development of such
components. For each software requirement, this document provides a full description, a list of
detailed requirements and specifications, a description of its architecture and components, the
data model, and relevant changes applied to the APl and Interfaces.

Zﬁggaq Copyright ©® 2021 OpenNebula Systems SL. All rights reserved.

This project has received funding from the European Union’s Horizon 2020 Research and
Innovation Programme under Grant Agreement No 880412.

©l00) This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
' CMTHETS |nternational License.

ONEedge - 880412 D3.3. Software Report - ¢ g‘ﬂ,’

Deliverable Metadata

Project Title: A Software-defined Edge Computing Solution

Project Acronym: ONEedge

Call: H2020-SMEInst-2018-2020-2

Grant Agreement: 880412

WP number and Title: WP3. Product Innovation

Nature: R: Report

Dissemination Level: PU: Public

Version: 1.0

Contractual Date of Delivery: | 30/9/2021

Actual Date of Delivery: 3/11/2021

Lead Authors: Vlastimil Holer, Rubén S. Montero and Constantino Vazquez

Authors: Sergio Betanzos, Pavel Czerny, Ricardo Diaz, Jim Freeman, Christian Gonzalez,
Alejandro Huertas and Jorge M. Lobo

Status: Submitted

Document History

Version Issue Date Status' Content and changes

1.0 3/11/2021 Submitted First final version of the D3.3 report

" A deliverable can be in one of these stages: Draft, Peer-Reviewed, Submitted and Approved.

Version 1.0 3 November 2021 Page 2 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

Executive Summary

The purpose of deliverable D3.3 is to offer a summary of the design of the technology
components that have been implemented in the Third Innovation Cycle (M17-M23), as well as
to provide the full details of each of the software requirements that are being addressed as
part of the development of such components. For each software requirement, this document
provides a full description, a list of detailed requirements and specifications, a description of its
architecture and components, the data model, and relevant changes applied to the APl and
Interfaces.

During the Third Innovation Cycle (M17-M23), the project mostly focused on those software
requirements needed to achieve the third milestone in M23, which is the base functionality
needed to meet networking & storage integration, and mostly its release as a standalone
managed service (On-demand Edge Cloud Service).

The work carried out during this Third Innovation Cycle involved software requirements from
components CPNT1, CPNT3, CPNT4 and CPNT5, with a special focus on the completion and
integration of all components to release a first version of the On-demand Edge Cloud Platform
service (CPNT1) and the deployment and provision of edge infrastructures (CPNT4). During the
Third Innovation Cycle, we have developed campaigns that are specific to the ONEedge hosted
service (standalone commercial solution) and not to be incorporated into OpenNebula. These
are some of the main new features that have been implemented as part of this process:

e First version of the On-demand Edge Cloud Service (ONEedge “Edge as a Service”
hosted instances) with definition of basic services and security requirements, key
performance indicators, 24/7 health monitoring and alerts.

e Automatic customer environment deployment, configuration and bootstrapping, and
complete life-cycle management of the ONEedge instances.

e ONEedge hosted framework implemented Following a GitOps paradigm and leveraging
Github WebUI portal and tools to simplify request, monitoring and basic management,
even for non-technical operators.

e Ability to dynamically load providers into OneProvision and extension of the
OneProvision GUI, which features the Edge Provider Catalog Service, to scan and load
new drivers without the need to update to a new release or modify any lines of code.

e Development of guides to create new providers that can be made dynamically available
in the Edge Provider Catalog Service.

e Enhancements to provision and components to support transparent secure connection
among geographically distributed edge locations.

e Development of new drivers for Google Compute Engine, Vultr (bare metal and virtual
instances), and Digital Ocean.

e Development of new drivers for on-prem far-edge provisions.
e Support for ARM devices at edge locations.

e Addition of MetalLB load balancer to K8s appliance for better networking in
Kubernetes clusters deployed at cloud and edge locations.

e New Sunstone GUI beta built using React/Redux and delivered by the FireEdge server.

Version 1.0 3 November 2021 Page 3 of 50

ONEedge - 880412 D3.3. Software Report - ¢

ERX3

Table of Contents

1. Edge Instance Manager (CPNT1)
[SR1.1] Simple Product Deployment
[SR1.3] Instance Management
[SR1.4] Subscription Management
[SR1.5] Web Control Interface (GUI)

2. Edge Workload Orchestration and Management (CPNT2)

3. Edge Provider Selection (CPNT3)
[SR3.1] Edge Provider Catalog Service

[SR3.4] Driver Maintenance Process

4. Edge Infrastructure Provision and Deployment (CPNT4)
[SR4.4] Inter-edge Networking Deployment Scenario
[SR4.5] Drivers for Host Provision
[SR4.9] Support on-Premises far-Edge for Resource Provisioning

[SR4.10] Support ARM for Resource Provisioning

5. Edge Apps Marketplace (CPNTS5)
[SR5.2] Built-in Management of Application Containers Engine
[SR5.5] Edge Market GUI Developments

O N U wn

11
14

15
15
18

21
21
24
32
34

36
36
39

Version 1.0 3 November 2021

Page 4 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

1. Edge Instance Manager (CPNT1)

[SR1.1] Simple Product Deployment

Description

Deployment based on application containers has evolved into the ONEedge hosted
deployment. This change allows a better life-cycle management as well as improving
deployment automation. Moreover, it is the base of a new business model.

A ONEedge hosted instance is a standalone installation of the OpenNebula frontend, FireEdge
and OneProvision services. The instance is available on the Internet via a hostname in the
opennebula.cloud domain, public IP address and a valid HTTPS certificate. All components are
preconfigured to be ready to use, and FireEdge with OneProvision are prepared to quickly
provision new HW resources from a given provider list.

Requirements and Specifications

The deployment is fully automated and it is periodically tested.
GitOps approach to the deployment and management of the hosted instances. The
state of the instances is represented with git objects.

e Simple operations: if you want to create a new OpenNebula hosted deploy or update
an existing one, you only need to update the repository—the automated process
handles everything from that point.

Architecture and Components

Terraform Templates

Current version of the hosted OpenNebula deployments includes Terraform templates for
hosted instances in AWS cloud. The following resources need to be pre-created in a given AWS
region to support the instances:

e VPC, CIDR: 10.0.0.0/16
e AWS Internet gateway
AWS default route in given VPC

New providers or AWS regions can be added easily because other components are fully
independent.

Ansible Roles and Playbooks

Once the compute resources are allocated, Ansible is used to configure them and install
OpenNebula and the associated ONEedge components. In the following table we detail the list
of ansible roles used for each instance, their purpose, and associated services.

Ansible Role Purpose Service
opennebula-repository Enable enterprise ONE repository | n/a
opennebula-server Install ONE packages, install and opennebula,
bootstrap database, configures opennebula-scheduler,
ONE opennebula-flow,

opennebula-gate,
opennebula-hem,
opennebula-novnc,
opennebula-sunstone

opennebula-provision Installs opennebula-oneprovison n/a

Version 1.0 3 November 2021 Page 5 of 50

ONEedge - 880412 D3.3. Software Report - ¢ ‘gﬂ

opennebula-fireedge Installs opennbula-fireedge opennebula-fireedge
opennebula-passenger Installs passenger, httpd server httpd
opennebula-prometheus Installs and configures prometheus
prometheus
docker Installs docker For dockerhub docker
images
certbot Retrieves and maintains Let's n/a
Encrypt SSL certificate

Tools and Tests

To put the GitOps together with the Terraform and Ansible, we developed a tool which allows
the deployments to be fully automatic. The deployment is operated in the same way that it is
also regularly tested.

Data Model

The attributes for the deployment are saved in a Git repository in a YAML file options.yaml.
Any changes to the deployment are made by updating this file, which triggers automatic
reconfiguration of the instance.

This is an example of options.yaml:

:name: deployment name

:company: company name

:mail: deployment contact email
:one_mail: OpenNebula contact email
:subdomain: name of the subdomain
:type: single/ha

:aws_region: eu-central-1
raws_size: t2.large

:provider: aws

Similarly, the state of the deployment is held in a state.yaml file.

:state: running
:signature: af27d42bc6b6b384ceeef186c1f658d2
:oneadmin_password: ---

Version 1.0 3 November 2021 Page 6 of 50

ONEedge - 880412 D3.3. Software Report - ¢ ‘?ﬂ

[SR1.3] Instance Management

Description

ONEedge instances are managed using a GitOps approach, where the state is represented as
git objects. The management of the life-cycle is controlled by performing updates on these
objects, which ultimately triggers actions that perform the necessary changes to match the
new state.

Requirements and Specifications

The main requirement for interfacing with the ONEedge hosted instances is that it should be
simple so that it can be used by community and pre-sales teams to set up demonstrations or
Proof-of-Concept (PoC) environments for potential customers.

Architecture and Components

The following picture represents the life-cycle and states of a hosted instance, as well as the
associated actions that trigger the instance changes.

(1) Create a new issue in Github using the template

rname: “acTedemol“ . (action-approve)
:company: "ACME Corporation

:mail: “sysadmin@acme.com”
rone_email:
"info@opennebula.io”
:subdomain: "acme"

rtype: “single”

raws_region: “"eu-central-1"
:aws_size: "t2.medium" action-deploy 2 Review information and update label
state-failure
3 Check email for connection info
action-delete

)
. ;_ ___________ 4 Dispose environment

state-running

Figure 1.3.1: ONEedge instance states and life-cycle.

The ONEedge hosted instance is in one of the following states:

new: the instance is created by Ffilling a new GitHub issue

running: the instance is running and fully configured

failure: the instance could not be deployed because of an error during the creation or
configuration phases

terminated: the instance is terminated

purged: configuration and state files are deleted

Changing of the instance state is done by following actions, that are implemented by adding
the corresponding label to the issue associated with the ONEedge hosted instance:

Version 1.0 3 November 2021 Page 7 of 50

ONEedge - 880412 D3.3. Software Report - ¢ ‘m

approve
deploy
update
delete
purge

Data Model

The state of the instance is stored in state.yaml as described above. Another part of the
definition of a running deployment instance is the terraform template and state file. Having all
the files persisted in the Git allows the deployment to be easily updated later.

API and Interfaces

Not applicable.

Version 1.0 3 November 2021 Page 8 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

[SR1.4] Subscription Management

Description

ONEedge hosted environments have been integrated with Zendesk. We use the Zendesk portal
to provide commercial support to our customers. Additionally, the ONEedge hosted
environment can be used to showcase our technology, so this integration is optional; a hosted
environment can be created without creating any user in Zendesk.

Requirements and Specifications

The main requirement is to be able to automatically create a new customer organization in
Zendesk and to add users to this organization. Once the users are added, they receive a
welcome email with all the information to use the support portal, their new hosted
environment, and how to open new support requests.

The converse operation is also supported: once the hosted environment is terminated, the
organization and the users can be optionally removed from Zendesk.

The organization also has various tags to identify the services they have contracted. These tags
can be automatically added to the user if they are included in the ONEedge hosted
environment creation request. There are some defaults added to identify the ONEedge hosted
product: active, evaluation, standard_technical, 1_zone.

Architecture and Components

The integration with Zendesk uses some information included in the creation request for the
hosted environment. By default, user creation in Zendesk is not activated, and needs to be
explicitly set to true, for example:

:use_zendesk: true
:zendesk_organization:
:name: testing
:tags:
- europe
:zendesk_users:
- :name: Testing User
:email testing@opennebula.io

Figure 1.4.1: Activate Zendesk integration
Once the integration has been activated, more information needs to be provided:

e zendesk_organization contains the name and tags that are added (together with the
default ones) to each user.

e zendesk_users, a list of users to add to this organization, for each of them the name
and the email must be provided:

Version 1.0 3 November 2021 Page 9 of 50

ONEedge - 880412

D3.3. Software Report - ¢ ‘?ﬂ

ACME
Tags 1_zone = || ha x
september_30_2025_end =
premier 4 customer =
active = || 98 _kwvm x
standard_technical =
Domains -
Group - -
Users Can view all org tickets v
..but not add comments -
Details Example of premium level
organization to configure
Pager Duty
Motes Subscriber: User

Type: Entry-level

Level: Standard

Priorities (1, 2, 3, 4).
(Mormal,Normal,High,Critical)
Date: July 4th, 2012

Term: 1 year

Figure 1.4.2: Zendesk organization

Data Model

There is no special data model. All the integration is done via GitHub issue as explained earlier

in this document

API and Interfaces

The integration is done using the official Zendesk API for Ruby?.

% https://github.com/zendesk/zendesk_api_client_rb/wiki

Version 1.0 3 November 2021

Page 10 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

[SR1.5] Web Control Interface (GUI)

Description

GitOps is a DevOps practice that uses a git repository to represent the state of the
infrastructure. Changes to the infrastructure are implemented by commits to the repository or
changes to git objects including: files, Github issues, labels and/or actions. This approach
allows us to use the Github interface so the user doesn't need to run any Git commands
directly.

Requirements and Specifications
Using the Github web interface allows community and pre-sales teams to operate the
deployments without the need to interact with lowevel Git commands or infrastructure.

Architecture and Components

To create a new hosted deployment instance, the user first needs to create a Github issue and
store the deployment definition there. The figure below shows a screenshot of this process:

Pulls Issues Marketplace Explore

& OpenNebula/one-hosted Private ®Watch ~ 9 ¢ Sar 0 o Fork | 2

<> Code (© Issues 7 1% Pull requests @ Actions [Projects 07 wiki @ Security

Issue: New OpenNebula Hosted Assignees &

) R R No one—assign yourself
This issue will place an allocation request for a new hosted environment. If this doesn’t look right,

choose a different type.

Labels i
Hosted Environment Demo None yet
Write: Preview Projects &
None yet
HB I =& =EH-d @ -
Milestone @
:name: demo-example No milestone
:company: testing3
:mail: userl@example.com
:one_mail: jorel@opennebula.io Linked pull requests
:subdomain: demo-example Successfully merging a pull request may
‘type: single close this issue.
:aws_region: eu-central-1 None yet
:aws_size: t2.small
‘provider: "aws"
testing: "yes" @ Helpful resources
wvalid_until: 2021-12-31 '/ GitHub Community Guidelines

Attach files by dragging & dropping, selecting or pasting them o

LA Styling with Markdown is supported

Figure 1.5.1: Creation interface for a new ONEedge hosted environment

Actions are triggered by adding labels to the issue created to represent the hosted
environment. For example, for approving the deployment and storing its definition into the Git
repository, the user needs to add a [action-approve] label to the issue. See image below:

Version 1.0 3 November 2021 Page 11 of 50

ONEedge - 880412 D3.3. Software Report - ¢

Pulls Issues Marketplace Explore

& OpenNebula/one-hosted Prvate @Watch ~ 9 ¢ Star 0

<> Code () Issues & i Pull requests () Actions [Projects

Hosted Environment Demo #51

[O)el\EAM xorel opened this issue now - 0 comments

xorel commented now

:name: demo-example
‘company: testing3

:mail: userl@example.com
:one_malil: jorel@opennebula.io
:subdomain: demo-example
‘type: single

:aws_region: eu-central-1
:aws_size: t2.small
:provider: "aws"

‘testing: "yes"

wvalid_until: 2021-12-31

Write Preview

H B I iz & =18 @ -

Figure 1.5.2: Approving the deployment of ONEedge hosted environment

M wiki © Security

Assignees

No one—assign yourself

Labels

Apply labels to this issue

Filter labels

% Fork

2

~ action-approve

© action-delete

@ =action-deploy
action-purge
action-update

® bug

Something isn't working

Then, a Github action is triggered and once it finishes it removes the action label and adds a

state label, [state-approved] in this case. Similarly, to run the deployment we add

[action-deploy] label and onceit's running, the issue will have [state-running] label
attached to it. In the action details we will find the deployment report which is also sent by
email to the user. Should the deployment fail for some reason, the issue will be tagged with a
[state-failure] label and the action logs can be inspected to debug the problem. The figure

below shows the logs of a deployment action.

Data Model
States:
e state-approved
e state-running
e state-failure
e state-deleted
e state-purged
Triggers:
e action-approve
e action-deploy
e action-update
e action-delete
e action-purge

Version 1.0 3 November 2021

Page 12 of 50

ONEedge - 880412 D3.3. Software Report - ¢ ﬁ?

one-hosted-deploy

v @ Run ./tools/one-hosted.rb deploy|update|delete|purge

running

Figure 1.5.3: Logs for the deployment action of a ONEedge action.

API and Interfaces
The actions and ONEedge interface are based on the Github interface and Github API.2

® https://docs.github.com/en/rest

Version 1.0 3 November 2021 Page 13 of 50

ONEedge - 880412 D3.3. Software Report - ¢ %

2. Edge Workload Orchestration and Management (CPNT2)

No activity done during the cycle.

Version 1.0 3 November 2021 Page 14 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

3. Edge Provider Selection (CPNT3)

[SR3.1] Edge Provider Catalog Service

Description

The goal of this software requirement is to provide a Catalog Service, currently implemented in
the OneProvision GUI. In this cycle, and to terminate the issue, we added the ability to load new
drivers. In this way, the OneProvision component is able to dynamically load the drivers on
execution time. This means it is easier to add a new provider, as OneProvision is able to detect
them without having to make any changes in the distribution code.

Although the providers are exposed in the GUI, they are also available in the CLI, to be used in
the same way. It is important to note that the functionality remains the same; this only changes
the method of adding new providers into OpenNebula.

Requirements and Specifications

The following changes have been made to OneProvision so admins do not need to touch the
distribution code to support new providers:

e Avoid having references to the specific provider names in the code. Currently there is
no distinction between them as they are generalized.

e Avoid having references to the directory where the information is stored. Each provider
uses different ERB files to generate the Terraform templates, stored in a folder that is
scanned automatically.

e Adda method to load the existing providers located on
Jusr/lib/one/oneprovision/lib/terraform/providers.

e Create an example class that can be copied to add the new provider, as follows:

require 'terraform/terraform'

Module OneProvision
module OneProvision

<<PROVIDER NAME>> Terraform Provider
class <<PROVIDER CLASS>> < Terraform

NAME = Terraform.append_provider(__FILE__, name)

OpenNebula - Terraform equivalence
TYPES = {
:cluster => '<<TERRAFORM RESOURCE>>'
:datastore => '<<TERRAFORM RESOURCE>>',
:host => '<<TERRAFORM RESOURCE>>',
:network => '<<TERRAFORM RESOURCE>>'

s

}

KEYS = %w[<<PROPVIDER CONNECTION INFO>>]

Class constructor

#

@param provider [Provider]

@param state [String] Terraform state in base64

@param conf [String] Terraform config state in base64

def initialize(provider, state, conf)
If credentials are stored into a file, set this variable to true
If not, leave it as it is
@file_credentials = false

Version 1.0 3 November 2021 Page 15 of 50

ONEedge - 880412 D3.3. Software Report - ¢ W

super
end

Get user data to add into the VM
#
@param ssh_key [String] SSH keys to add
def user_data(ssh_key)
<<IMPLEMENT THIS METHOD IF NEEDED, IF NOT YOU CAN DELETE IT>>
end

end

end

Figure 3.1.1: Example class

Architecture and Components

The main changes are located on Terraform classes that are in charge of deploying the servers
into the remote providers. All the distinctions between the providers have been removed, so
now Terraform is able to work with any provider. To achieve this, a new attribute NAME has
been added to the class. This allows Terraform to know which provider is being used:

NAME = Terraform.append_provider(__FILE__, name)

Figure 3.1.2: Name attribute

The method to load the providers has been added in all the necessary places. This is across all
the OneProvision code, as the providers are used in many places. This is basically a static
method that reads all the available files and loads the provider written on them:

Terraform.p_load

Figure 3.1.3: Load providers methods

Some changes have been added to OneProvision GUI so that it is able to read the logos of the
new provider.

Data Model

The key part here is the structure of the directory where the providers are stored. Although the
directory itself has not changed, the way to read it has. The directory is located in
Jusr/lib/one/oneprovision/lib/terraform/providers and contains:

e The Provider class: these are the files with .rb extensions, it is very important to note
that only the files with this extension are loaded.
e The Provider templates: this directory contains the ERB for each provider.

The name of the provider file class should be the same (without .rb) as the folder inside the
templates directory. For example, if the provider is called digitalocean.rb, the folder inside
templates should be named digitalocean. The current state of the folder, showing the
supported providers, is shown in the following figure.

providers

F— aws.rb
— digitalocean.rb

F— dummy.rb
F— equinix.rb

Version 1.0 3 November 2021 Page 16 of 50

ONEedge - 880412 D3.3. Software Report - ¢ %

I
I
I
I
I
I
|
I
I
I
I
I
I
|
I
I
I
I
I
I
|
I
I
I
I
I
I
|
I
I
I
I
|
I
I
|_
|_
L

— example
F— google.rb
— templates

F— aws

| F— cluster.erb
| | datastore.erb
| | host.erb

| | network.erb

| L— provider.erb
— digitalocean

| | cluster.erb

| |— datastore.erb
| | host.erb

| | network.erb

| '— provider.erb
F— equinix

| | cluster.erb

| | datastore.erb
| F— host.erb

| F— network.erb

| — provider.erb
F— google

| | cluster.erb

| b datastore.erb
| | host.erb

| | network.erb

| L— provider.erb
F— vultr_metal

| F— cluster.erb

| |— datastore.erb
| | host.erb

| | network.erb

| '— provider.erb
L— vultr_virtual

F— cluster.erb
}— datastore.erb
— host.erb

— network.erb
L— provider.erb

vultr_metal.rb
vultr.rb
vultr_virtual.rb

Figure 3.1.4: Current filesystem structure

APl and Interfaces

There are no changes in the API, but rather in the structure and semantics of the providers
stored in the front-end filesystem.

The admin interface to add a new provider uses typical linux shell tools:

1.

Copy the file /usr/lib/one/oneprovision/lib/terraform/providers/example to
/usr/lib/one/oneprovision/lib/terraform/providers/<provider>.rb

Fill all the information inside of it.

Create the ERB templates inside
/Jusr/lib/one/oneprovision/lib/terraform/providers/templates/<provider>
Test the new provider.

Version 1.0 3 November 2021 Page 17 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

[SR3.4] Driver Maintenance Process

Description

The goal of this software requirement is to provide a process to add new infrastructure
providers into OpenNebula with full support to be used in OneProvision. For this purpose, a
guide has been created, with all the steps from the beginning until the Ansible recipes to
configure the servers.

The process has multiple steps:

Add the provider class.
Add Terraform ERB Files.
Add Ansible playbook.
Add provision templates.

Requirements and Specifications
Each driver requires the following elements:

e Terraform support: it needs a Terraform provider to be able to deploy and destroy the
servers and all the resources, such as networks, VPC, etc. If the provider is not
supported by Terraform, it cannot be added into OpenNebula.

e Network model: networking is consistently the most specific part of a provider. In some
cases it needs to use the OpenNebula IP address management (IPAM) submodule, so an
IPAM driver needs to be implemented which includes all the scripts that manage the
IPAM functionality, with developer guides available. Alternatively, a different way to
give access to networking to virtual machines can be used: in this case, it needs to be
implemented as a network driver into OpenNebula. Both of the methods would require
API calls to the remote provider and this can be done using an external API or just
directly using HTTP requests.

Architecture and Components

Each driver is a combination of multiple components and behind each of them is the idea to
place the driver in combination with FireEdge, so both can work together without any issue.
they are the following:

e Run-time class: implements the driver functionality. Classes are created dynamically
(check section SR3.1 for more information), so the user can implement their own
drivers in an easy way. The class must follow these rules:

o The hash TYPES contains the relationship between the OpenNebula object and
the Terraform name, e.qg.:

TYPES = {
:cluster => 'digitalocean_vpc',
:datastore => 'digitalocean_volume',
:host => 'digitalocean_droplet',
:network => "'

Figure 3.4.1: Driver TYPES example

o The array KEYS contains the name of the keys that are used to authenticate
with the remote provider, e.g.:

KEYS = %w[token region]

Version 1.0 3 November 2021 Page 18 of 50

https://docs.opennebula.io/6.0/integration_and_development/infrastructure_drivers_development/devel-ipam.html

ONEedge - 880412 D3.3. Software Report - ¢ w

Figure 3.4.2: Driver KEYS example

o The method user_data is used to add the SSH keys to the server in order to
access it, e.g.:

def user_data(ssh_key)
user_data = "#cloud-config\n"

user_data << "users:\n"

user_data << " - name: install\n"

user_data << " groups: sudo\n"

user_data << " shell: /bin/bash\n"

user_data << " sudo: ['ALL=(ALL) NOPASSWD:ALL']\n"
user_data << " ssh_authorized_keys:\n"

ssh_key.split("\n").each {|key| user_data << "- #{key}\n" }

user_data = user_data.gsub("\n", '\\n")
end

Figure 3.4.3: Function user_data example

e Terraform templates: they are written in ERB format and are used to create the YAML
file that Terraform needs to deploy the resources. There is a template for each
resource, e.g.:

digitalocean

F— cluster.erb # Common resources for the cluster
[— datastore.erb # Datastore representation

F— host.erb # Host representation

— network.erb # Network representation

L— provider.erb # Terraform provider definition

Figure 3.4.4: Terraform ERB files

e Provision template: YAML file that represents the provision. This is all the information
that is needed to deploy it:
o Provision name.
Ansible playbook used to configure the hosts.
Some provision defaults like the image to deploy, the instance type, etc.
OpenNebula cluster definition.
Common information for all the provisions.

o O O O

name: 'digitalocean-cluster'

extends:
- common.d/defaults.yml
- common.d/resources.yml
- common.d/hosts.yml
- digitalocean.d/datastores.yml
- digitalocean.d/fireedge.yml
- digitalocean.d/inputs.yml
- digitalocean.d/networks.yml

playbook:
- digitalocean

defaults:
provision:
provider_name: 'digitalocean'
image: "${input.digitalocean_image}"
size: "${input.digitalocean_size}"
connection:

Version 1.0 3 November 2021 Page 19 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

remote_user: 'install'

cluster:
name: "${provision}"
description: 'Digitalocean virtual edge cluster'
reserved_cpu: '0'
reserved_mem: '0'
datastores:
-1
-2

Figure 3.4..5: Digitalocean provision YAML

e Provider template: YAML file that represents the provider. This is the information that
is needed to interact with it and the location in the world in which to deploy the
servers.

Data Model

There are two key parts of the procedure to create a new provider driver: the provision
template that defines the provision that is going to be deployed, and the Ansible roles that are
going to configure the provision:

e The provision template is a YAML-formatted file with parameters specifying the new
physical resources to be provisioned with the following attributes:
o Header (name, configuration playbook)
o Global default parameters for
m remote connection (SSH)
m host provision driver
m host configuration tunables
o OpenNebulainfrastructure objects (cluster, hosts, datastores, virtual networks)
to deploy with overrides to the global defaults above
o OpenNebula virtual objects (images, templates, vnet templates, marketplace
apps, service templates)
e Ansible is used to configure the provision.
o It needs to implement the following parts:
m task: asingle configuration step
m role: asetof related tasks
m playbook: a set of roles/tasks to configure several components at once
o The configuration phase can be parameterized to slightly change the
configuration process. These custom parameters are specified in the
configuration section of the provision template. In most cases, the general
defaults should meet requirements. All code for Ansible (tasks, roles,
playbooks) is installed in /usr/share/one/oneprovision/ansible/.

Version 1.0 3 November 2021 Page 20 of 50

ONEedge - 880412 D3.3. Software Report - ¢ wm

4. Edge Infrastructure Provision and Deployment (CPNT4)

[SR4.4] Inter-edge Networking Deployment Scenario

Description

In general, connections with services are performed using a TCP/IP endpoint (UDP in case of
connectionless communication) identified by the tuple: (SOURCE_IP:SOURCE_PORT,
DESTINATION_IP:DESTINATION_PORT). However, in some situations, due to the IP address
being a limited resource, one or several IP addresses have to be shared among different
services. The Port Forwarding technique (also known as NodePort by other systems like
Kubernetes) consists of still identifying the service by using an IP address and a TCP/UDP port
for external connections, and forwarding that connection to an internal IP address (usually in a
private network) and a UDP/TCP port.

Requirements and Specifications

We assume the following requirements for the network connection of the applications:

e A publicendpoint composed of a public IP address and a UDP/TCP port.
e A private endpoint composed of a private IP address and a UDP/TCP port.
e Aforwarding mechanism to send the traffic from/to the private and public endpoints.

Therefore, it can be considered that when using Port Forwarding, services are identified by the
TCP/UDP port (layer 4, L4) listening on the public IP.

For example, let's assume two virtual machines with private IP addresses /P7 and /P2 are hosted
by a machine (host) with a public IP address /P3. Both VMs have the SSH service listening on
port TCP/22. The external (public) SSH service can be identified by /P3:9022 endpoint for the
first VM and by /P3:9122 endpoint for the second. Using Port Forwarding, connections to
IP3:9022 will be forwarded to /P7:22, and connections to /P3:9122 will be forwarded to /P2:22.

Architecture and Components

The following picture shows the network connectivity architecture for the Port Forwarding

technique:

Private Enpoint VM1

OpenNebula Host

OpenNebula FrontEnd

CRON @ NOE

OpenNebula Service Internet Public Enpoint Private Subnet Private Enpoint VM2

D ©°r

Port Forwarding Driver Private Enpoint VMn

LLLLL
LLLELEL

Port Forwarding Architecture

Figure 4.4.1: Port Forwarding technique to expose VM ports.

Version 1.0 3 November 2021 Page 21 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

The nodeport driver (nodeport.rb) in OpenNebula configures the host routing tables to
forward the traffic from/to the public endpoint to the target private endpoint using iptables.
When a virtual machine is created, the following iptables rules are added:

iptables -t nat -I PREROUTING -p tcp --dport <EXTERNAL_PORT_RANGE> -j DNAT --to-destination
<INTERNAL_IP>:<INTERNAL_PORT_RANGE>

iptables -t nat -A POSTROUTING -s <INTERNAL_IP> -j MASQUERADE

Figure 4.4.2: SNAT/DNAT iptables rules to set up port forwarding

The first rule below is in charge of changing the destination public (external) IP address and
port of the incoming packets by the private (internal) IP address and port of the virtual
machine; the second rule is in charge of restoring the external IP address and port of packet
responses when they are about to go out to the Internet.

Data Model

Virtual networks should be able to allocate and manage the port ranges associated with each IP
lease. In the figure below, we show the definition of a nodeport virtual network:

NAME=<NAME>

BRIDGE=<BRIDGE>

VN_MAD="nodeport"

AR = [
IP=<INTERNAL_IP>,
PORT_START=<EXTERNAL_PORT_START>,
PORT_SIZE=<EXTERNAL_PORT_RANGE_SIZE>,
TYPE="IP4"

]

Figure 4.4.3: Network Template that defines a nodeport association

Each lease in an Address Range (AR) is identified by an ID and the corresponding port ranges
(e.g. 4000:4099, 4100:4199, 4200:4299...) following this formula:

RANGE(i) = [PSTART + i - PSTART + i + PSIZE]

For example, the following figure shows a virtual network template that defines a port range
of 100 ports mapped for each lease from port 9000:

NAME="mynodeportvnet”
BRIDGE="bro"
BRIDGE_TYPE="11inux"
VN_MAD="nodeport"

AR = [
GATEWAY="192.168.23.1",
IP="192.168.23.2",
PORT_SIZE="100",
PORT_START="9000",
PROVISION_ID="1",
SIZE="250",

TYPE="IP4",
IP_END="192.168.23.251"

Figure 4.4.4: Network Template example for port ranges of size 100 from port 9000

When a VM requests a lease from the network it also gets the associated port range as shown
below:

Version 1.0 3 November 2021 Page 22 of 50

ONEedge - 880412 D3.3. Software Report - ¢ %

ADDRESS RANGE POOL

AR 0O

SIZE 1 250

LEASES H)

RANGE FIRST LAST
MAC 02:00:c0:a8:17:02 02:00:c0:a8:17:fb
IP 192.168.23.2 192.168.23.251
LEASES

AR OWNER MAC Ip PORT_FORWARD IP6

0 V:0 02:00:c0:a28:17:02 192.168.23.2 [9001:9100]:[1-100] -

Figure 4.4.5: Sample allocation of IP and port ranges for a VM

API and Interfaces

The nodeport driver uses the OpenNebula network interfaces and APIs to implement the
forwarding driver. The virtual network drivers are loaded from the
/var/lib/one/remotes/vnm/nodeport/ folder and they implement the actions:

/var/lib/one/remotes/vnm/nodeport/
— nodeport.rb # nodeport driver implementation

— pre # before the NIC attach

F— post # after the NIC attach (installs iptables rules)

F— clean # on VM power off or destroy (deletes iptables rules)
L— update_sg # Security Groups update

Figure 4.4.6: Driver files

Version 1.0 3 November 2021 Page 23 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

[SR4.5] Drivers for Host Provision

Description

A new set of provision drivers (used to communicate with edge/cloud providers) has been
added to the main ONEedge distribution. A provision driver includes the functionality needed
to interact with the edge/cloud provider to manage the associated resources (e.g. creating or
updating them). The new drivers included are the following:

e DigitalOcean
e Google Cloud Compute Engine
e \ultr

Requirements and Specifications

Each driver is a combination of multiple components, each one designed to be integrated with
the FireEdge Ul. The main components of a driver are:

e Run-time class: implements the driver functionality. The classes are created
dynamically (see sections SR3.1 and SR3.4 for more information), so the user can
implement their own drivers in an easy way.

e Terraform templates: they are written in ERB format and are used to create the YAML
file that Terraform needs to deploy the resources. There is a template for each
resource, for example:

digitalocean

F— cluster.erb # Common resources for the cluster
— datastore.erb # Datastore representation

F— host.erb # Host representation

F— network.erb # Network representation

L— provider.erb # Terraform provider definition

Figure 4.5.1: Terraform ERB Ffiles

e Provision template: YAML file that represents the provision, with all the information
needed to deploy it such as the name, the ansible playbook to configure it, or the
associated OpenNebula resources.

e Provider template: YAML file that represents the provider. This is the information that
is needed to interact with it and the location in the world in which to deploy the
servers.

Architecture and Components

DigitalOcean*

Interacts with Digitalocean provider to deploy virtual servers as base nodes for the provision.
This type of provisions can be used to deploy application containers given their lightweight
profile.

Provision Architecture

The servers are deployed using Terraform and each server is a virtual machine, not a physical
server. It uses a VPC to isolate the networking in the cluster in combination with a firewall to

* https://www.digitalocean.com/

Version 1.0 3 November 2021 Page 24 of 50

ONEedge - 880412 D3.3. Software Report - ¢ %

allow only the desired traffic. This can be further customized using OpenNebula security
groups. Check section SR 4.4 to see the network model in detail.

front-end VXLAN BGP-eVVPN (underwork) i Template Inputs

e | | | | .

Co | ' ‘ ' ' T Intermet’ | jigitalocean_droplet:
image isystemi 5 host
Datastores ssh-replica | &

OpenNebula view

e DigitalOcean view

VPC Route Table
TF Resources
- DigitalOcean Droplet
- DigitalOcean VPC
- DigitalOcean firewall

Figure 4.5.2: Digital Ocean Architecture

Terraform Templates

The following terraform objects are created:

e digitalocean_vpc

resource "digitalocean_vpc" "device_<%= obj['ID'] %>" {

name = "vpc-one-<%= obj['ID'] %>"
region = "<%= provision['REGION'] %>"
<%

net_id = obj['ID'].to_1
id_h ((net_1id & 3840) >> 8) + 16
id_1 net_id & 255

%>

ip_range = "172.<%= id_h %>.<%= i1d_1 %>.0/24"

Figure 4.5.3: Digitalocean Terraform VPC

e digitalocean_droplet

resource "digitalocean_droplet" "device_<%= obj['ID'] %>" {

image = "<%= provision['IMAGE'] %>"
name = "<%= provision['"HOSTNAME'] %>"
region = "<%= provision['REGION'] %>"
size = "<%= provision['SIZE'] %>"
user_data = "<%= obj['user_data'] %>"

vpc_uuid = digitalocean_vpc.device <%= c['ID'] %>.1d

Figure 4.5.4: Digitalocean Terraform droplet

o digitalocean_firewall

resource "digitalocean_firewall" "device_<%= obj['ID'] %>" {
name = "vnc-device-<%= obj['ID'] %>"

droplet_ids = [digitalocean_droplet.device <%= obj['ID'] %>.1id]

Version 1.0 3 November 2021 Page 25 of 50

ONEedge - 880412 D3.3. Software Report - ¢ %

inbound_rule {

protocol = "tcp"

port_range = "22"

source_addresses = ["0.0.0.0/0", "::/0"]
}

BGP traffic from VPC droplets. IP range MUST be consistent with cluster.erb
inbound_rule {

protocol = "tcp"

port_range = "179"

source_addresses = [digitalocean_vpc.device <%= c['ID'] %>.ip_range]

}

VXLAN traffic from VPC droplets. IP range MUST be consistent with cluster.erb
inbound_rule {

protocol = "udp"

port_range = "8472"

source_addresses = [digitalocean_vpc.device_<%= c['ID'] %>.ip_range]

}

Client Ports for VMs. Port range MUST be consistent with VNET definition
inbound_rule {

protocol = "tcp"
port_range = "9000-65535"
source_addresses = ["0.0.0.0/0"]
}
outbound_rule {
protocol = "tcp"
port_range = "1-65535"
destination_addresses = ["0.0.0.0/0", "::/0"]
}
outbound_rule {
protocol = "udp"
port_range = "1-65535"

destination_addresses = ["0.0.0.0/0", "::/0"]
}

outbound_rule {
protocol = "1icmp"
destination_addresses ["0.0.0.0/0", "::/0"]

Figure 4.5.5: Digitalocean Terraform firewall

Provision Template

The following elements are created in OpenNebula:

A cluster that contains all the resources, including the default datastores.

LXC hosts, one host for each droplet.

System and image datastores using replica OpenNebula method.

Public network to access VMs running on hosts.

Vnet template that can be instantiated to create private networks for the VMs.

Provider Template

There are five pre-created provider templates, each one for a different DigitalOcean location. A
DigitalOcean template includes:

e Token: used to authenticate against DigitalOcean.

Version 1.0 3 November 2021 Page 26 of 50

ONEedge - 880412 D3.3. Software Report - ¢ %

e Region: location in the world in which to deploy all the resources.

name: 'digitalocean-ams3'

description: 'Virtual Edge Cluster in DigitalOcean datacenter in Amsterdam (AMS3)'
provider: 'digitalocean'

connection:
token: 'DigitalOcean token'
region: 'ams3

Figure 4.5.6: Digitalocean Amsterdam provider YAML

Google Cloud Compute Engine®

Interacts with Google Cloud Compute Engine provider to deploy virtual servers as provision
nodes.

Provision Architecture

The servers are deployed using Terraform and each server is a virtual machine, not a physical
server. The schema is similar to that described for DigitalOcean above.

Template Inputs

front-end VXLAN BGP-eVPN (underwork) E google_image:
- T o [| | | : internet | 900gle_machine_type:
w ésygt_ém H m E

Datastores ssh-replica &)

OpenNebula view

Google view

VPC IP Tables
From To

public:o001 | VM:1 Internet:
public:9022 | VM:22

TF Resources

- Google Compute Network

- Google Compute Firewall
- Instances

Figure 4.5.7: Google Compute Engine Architecture

Terraform Templates

The following terraform objects are created:

e google_compute_network

resource "google_compute_network" "device_<%= obj['ID'] %>" {
name = "<%= obj['NAME'] %>-vpc"
}

Figure 4.5.8: Google Terraform network

e google_compute_instance

® https://cloud.google.com/compute

Version 1.0 3 November 2021 Page 27 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

resource "google_compute_instance" "device <%= obj['ID'] %>" {
name = "<%= provision['HOSTNAME'] %>"
machine_type = "<%= provision['MACHINETYPE'] %>"

boot_disk {
initialize_params {
image = "<%= provision['IMAGE'] %>"
}
}

network_interface {
network = google_compute_network.device_<%= c['ID'] %>.name

access_config {
// Ephemeral IP

}
}
metadata = {

ssh-keys = "<%= obj['user_data'] %>"
}

Figure 4.5.9: Google Terraform instance

e google_compute_Ffirewall

resource "google_compute_firewall" "device <%= obj['ID'] %>" {
name = "<%= obj['NAME'] %>-firewall"
network = google_compute_network.device_<%= obj['ID'] %>.name

allow {
protocol = "icmp"
}
Client Ports for VMs. Port range MUST be consistent with VNET definition
allow {
protocol = "tcp"
ports = ["22", "179", "5900-6000", "9000-65535"]
}
allow {
protocol = "udp"
ports = ["8472"]
}

Figure 4.5.10: Google Terraform firewall

Provision Template

The following elements are created in OpenNebula:

A cluster that contains all the resources, including the default datastores.

LXC hosts.

System and image datastores using replica OpenNebula method.

Public network to access VMs running on hosts.

Vnet template that can be instantiated to create private networks for the VMs.

Provider Template

There are four pre-created provider templates, each of them is for a different GCE. A GCE
template includes:

e Credentials: JSON file used to authenticate against Google.

Version 1.0 3 November 2021 Page 28 of 50

ONEedge - 880412 D3.3. Software Report - ¢ %

e Project: project ID where the instance is going to be deployed.
e Region and zone: both together identify the location in the world where the instance is
going to be deployed.

name: 'google-belgium'

description: 'Virtual Edge Cluster in Google Belgium (europe-westi-b)'
provider: 'google'

connection:
credentials: 'JSON credentials file'
project: 'Google Cloud Platform project ID'
region: 'europe-west1'
zone: 'europe-westil-b'

inputs:
- name: 'google_image'
type: 'list'
options:
- 'centos-8-v20210316'
- name: 'google_machine_type'
type: 'list'
options:
- 'e2-standard-2'
- 'e2-standard-4'
- 'e2-standard-8'

Figure 4.5.11: Google Belgium provider YAML
Vultr®

Interacts with Vultr provider to deploy two variants of provision hosts virtual and bare metal
servers.

Provision Architecture

The servers are deployed using Terraform and each server is a virtual machine or physical
server. It requests an IP address from the provider to add public connectivity to the VMs
running on the hosts. This is used in combination with the OpenNebula IPAM driver to request
or release the IPs from the VMs.

Template Inputs

front-end ; VXLAN BGP-eVPN : plan:
e = O os
SRR] : count:
W i) T EEH |
Datastores ssh-replica| | &)

Vultr view

server server server

TF Resources

-Instance

Vultr servers

% https://www.vultr.com/

Version 1.0 3 November 2021 Page 29 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

Figure 4.5.12: Google Compute Engine Architecture

Terraform Templates

The following terraform objects are created:

e vultr_bare_metal_server

resource "vultr_bare_metal_server" "device <%= obj['ID'] %>" {

hostname = "<%= provision['HOSTNAME'] %>"

plan = "<%= provision['PLAN'] %>"

region = "<%= provision['REGION'] %>"

os_1id = "<%= provision['0S'] %>"

script_1id = vultr_startup_script.device_<%= obj['ID'] %>.1d
tag = "OpenNebula - ONE_ID=<%= obj['ID'] %>"

activation_email = false

Figure 4.5.13: Vultr Terraform server

Provision Template

The following elements are created in OpenNebula:

A cluster that contains all the resources, including the default datastores.
KVM or LXC hosts.

System and image datastores using replica OpenNebula method.

Public network to access VMs running on hosts.

Provider Template

There are four provider templates. Each of them is for a different location in the world and
they contain:

e Key: used to authenticate against Vultr.
e Region: location in the world in which to deploy all the resources.

name: 'vultr-amsterdam'

description: 'Edge cluster in Vultr Amsterdam'
provider: 'vultr_metal'

connection:
key: 'vultr key'
region: 'ams'

inputs:

- name: 'vultr_os'
type: 'list'
options:

- '362'

- name: 'vultr_plan'
type: 'list'
options:

- 'vbm-8c-132gb'

Figure 4.5.14: Vultr Amsterdam provider YAML

Data Model

The data is stored in the OpenNebula database using XML documents through the oneprovision
and oneprovider commands. The user can use the templates described in the previous section

Version 1.0 3 November 2021 Page 30 of 50

ONEedge - 880412 D3.3. Software Report - ¢ \m

to create a provider using the new drivers via oneprovider and create a new provision via the
oneprovision command.

Once the provision is deployed using Terraform, the state file is also stored in the database
using a provision document. This state is managed internally by OpenNebula in the same way as
is done by the other drivers.

API and Interfaces

No changes were made in the API nor in the CLI. The idea of this feature was to add new
providers to the existing one, maintaining the data structure that was previously developed.

Version 1.0 3 November 2021 Page 31 of 50

ONEedge - 880412

D3.3. Software Report - ¢

[SR4.9] Support on-Premises Far-Edge For Resource Provisioning

Description

In order to allow the configuration of on-premises nodes, the oneprovision tool has been
extended to be able to configure existing bare metal resources, and thus simplify and
automate the process of adding new resources to the cloud. The main goals of this

requirement are:

e Standardization: ONEedge instances only support the configurations that better fit

the far-edge deployment. The use of well defined configurations will force

standardization across the on-premises and edge clusters, easing both maintenance

and operation.

e Speed up: the automation on the configuration of the on-premises cluster
infrastructure allows us to speed up the provisioning of the hosts.

e Reduce costs: thanks to the standardization and the speed-up of the provisioning

process.

Requirements and Specifications

The on-premises provisioning is fully compatible with the existing oneprovision tool, hence it
has the same requirements defined in section SR4.5 Drivers for Host Provision. Also, it must be
treated like any other driver in order to keep all the oneprovision’s interfaces as simple as

possible.

Architecture and Components

The on-premises cluster includes the following components:

e Nodes with a CentOS8 installation.
e Networking consisting of: (i) management interface to connect the nodes to the
front-end; (ii) a public network; and (iii) a private network for VM interconnection using

VXLAN.

e Storage areain the nodes to hold the VM disk images.

As part of the cluster, the provision drivers create the associated elements in OpenNebula

including the hosts, datastores, and private and public networks.

front-end

Datastores ssh replica

10.0.10.4

eth0

VXLAN BGP-eVPN

eth1

Internet

@

Figure 4.9.1: Architecture and components for the default on-premises cluster

The on-premises clusters are defined by:

Version 1.0

3 November 2021

Page 32 of 50

ONEedge - 880412 D3.3. Software Report - ¢ \m

e Acluster template that specifies the cluster elements described above.
e Asetofansible playbooks that includes the installation of the software dependencies
and configures the network interfaces and the storage volumes.

It is interesting to note that these elements of the on-premises driver are customizable in order
to support ad-hoc scenarios and/or install additional components that better integrate the
cluster with other existing services in the data center.

Data Model

The data model is defined in Section SR4.5 Drivers for Host Provision. The on-premises drivers
have been designed to be fully compatible with the oneprovision runtime and so leverage all
the associated tools.

API and Interfaces

Not applicable.

Version 1.0 3 November 2021 Page 33 of 50

ONEedge - 880412

D3.3. Software Report - ¢

[SR4.10] Support ARM for Resource Provisioning

Description

In order to be able to provision ARM resources, the building tooling was extended to support
aarch64 along with x86_64. To allow greater flexibility, we added support for cross-compilation
of binary packages, and so compile ARM packages on Intel servers.

Requirements and Specifications

Not applicable.

Architecture and Components

The same package structure is preserved for ARM builds. Note that some of these packages are
architecture independent and are the same for every platform. In the following table we detail
the new ARM packages for RPM and deb-based distributions, as well as architecture

independent packages:

deb packages (aarch64/armé4) RPM packages (aarch64/armé4)

docker-machine-opennebula_6.2.0-2_armé4.deb

docker-machine-opennebula-6.2.0-2.el8.aarch64.rpm

opennebula_6.2.0-2_arm64.deb

opennebula-6.2.0-2.el8.aarch64.rpm

opennebula-fireedge_6.2.0-2_armé64.deb

opennebula-fireedge-6.2.0-2.el8.aarch64.rpm

opennebula-guacd_6.2.0-2_armé4.deb

opennebula-guacd-6.2.0-1.2.0+2.el8.aarch64.rpm

opennebula-node-firecracker_6.2.0-2_armé4.deb

opennebula-node-Ixc-6.2.0-2.el8.aarch64.rpm

opennebula-node-lxc_6.2.0-2_armé64.deb

opennebula-node-Ixd_6.2.0-2_armé64.deb

opennebula-rubygems_6.2.0-2_armé4.deb

RPM packages (no arch)

opennebula-rubygems-6.2.0-2.el8.aarch64.rpm

opennebula-common-6.2.0-2.el8.noarch.rpm

deb packages (all)

opennebula-common-onecfg-6.2.0-2.el8.noarch.rpm

libopennebula-java_6.2.0-2_all.deb

opennebula-flow-6.2.0-2.el8.noarch.rpm

libopennebula-java-doc_6.2.0-2_all.deb

opennebula-gate-6.2.0-2.el8.noarch.rpm

opennebula-common_6.2.0-2_all.deb

opennebula-java-6.2.0-2.el8.noarch.rpm

opennebula-common-onecfg_6.2.0-2_all.deb

opennebula-libs-6.2.0-2.el8.noarch.rpm

opennebula-flow_6.2.0-2_all.deb

opennebula-migration-6.2.0-2.el8.noarch.rpm

opennebula-gate_6.2.0-2_all.deb

opennebula-migration-community-6.2.0-2.el8.noarch.rpm

opennebula-libs_6.2.0-2_all.deb

opennebula-node-firecracker-6.2.0-2.el8.aarch64.rpm

opennebula-migration_6.2.0-2_all.deb

opennebula-node-kvm-6.2.0-2.el8.noarch.rpm

opennebula-migration-community_6.2.0-2_all.deb

opennebula-provision-6.2.0-2.el8.noarch.rpm

opennebula-node-kvm_6.2.0-2_all.deb

opennebula-provision-data-6.2.0-2.el8.noarch.rpm

opennebula-provision_6.2.0-2_all.deb

opennebula-sunstone-6.2.0-2.el8.noarch.rpm

opennebula-provision-data_6.2.0-2_all.deb

opennebula-tools-6.2.0-2.el8.noarch.rpm

opennebula-sunstone_6.2.0-2_all.deb

python3-pyone-6.2.0-2.el8.noarch.rpm

Version 1.0

3 November 2021

Page 34 of 50

ONEedge - 880412 D3.3. Software Report - ¢ %

opennebula-tools_6.2.0-2_all.deb

python3-pyone_6.2.0-2_all.deb

Data Model

The number and name of packages are the same for Intel and ARM architectures.

API and Interfaces

Not applicable.

Version 1.0 3 November 2021 Page 35 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

5. Edge Apps Marketplace (CPNT5)

[SR5.2] Built-in Management of Application Containers Engine

Description

In order to deploy containerized applications on cloud and/or edge resources provisioned with
the tools/SRs described in Section 4, a container orchestration system and application
containers engine must be provided. The main aim of this software requirement is the delivery
and management of Kubernetes clusters as a service to deploy, manage, and scale application
containers.

Kubernetes clusters can be created and provisioned using one of the two appliances:

e KS8s appliance based on the standard Kubernetes distribution (https://kubernetes.io/)
e K3s appliance based on the lightweight K3s distribution (https://k3s.io/), which is more
suitable for edge environments

In this cycle, and in order to access applications deployed on the Kubernetes clusters, the K8s
appliance has been enhanced by integrating the Load Balancer service type, beside the
already available NodePort and External IP service types.

Requirements and Specifications

Kubernetes clusters are defined as virtual appliances in OpenNebula Marketplace that are
ready to run and can be instantiated in any OpenNebula environment. In order to expose
applications running in Kubernetes pods, the K8s appliance is enhanced with the Load Balancer
service type, based on MetalLB.

Architecture and Components
The “"Kubernetes” Appliances (coming in both K8s and K3s flavors) are composed of:

e animage that already contains all the installed packages that are needed to configure
and bootstrap a Kubernetes cluster

e the Virtual Machine template that allows the deployment and configuration of a single
node of the cluster (both the master or the worker)

e One Flow Service template that allows the deployment and configuration of a
multi-node Kubernetes cluster

The VM and the OneFlow Service templates are the same for both the Kubernetes
distributions.

Single Node Deployment

In this type of deployment, the user doesn’t need to set up anything in advance. The appliance
will bootstrap a fully functional single node Kubernetes cluster which can then be extended
with other worker nodes at any time. In cases where the default behavior is not sufficient, the
user can contextualize the appliance with few parameters that control deployment
customization. New nodes can join an already running Kubernetes cluster, if the user provides
the contextualization parameters that specify the master node IP address and the secret token
and hash.

Multi-Node Deployment

An automatically managed multi-node Kubernetes cluster can be created by instantiating the
OneFlow Service template. The Service defines two roles: the master and the worker. The user

Version 1.0 3 November 2021 Page 36 of 50

https://k3s.io/
https://metallb.universe.tf/

ONEedge - 880412 D3.3. Software Report - ¢ W

can customize the K8s cluster deployment by providing a list of specific contextualization
variables parameters.

In this cycle, and for both kinds of deployments, the appliance has been extended so the user
can configure a Load Balancer service type by configuring a context parameter for the IP range
(ONEAPP_K8S_LOADBALANCER_RANGE, see the Data Model section for a more detailed
description of the permitted context parameters). The implementation is based on the
integration of the baremetal load balancer provider, called MetalLB, that by default is
configured as ARP/Layer2 LoadBalancer (i.e. the exposed LoadBalancer IP must be routed to
one of the Kubernetes nodes by means outside of the scope of the appliance itself). MetalLB
also supports BGP/Layer3 load balancing. If the user is capable of setting up the network for
this dynamic routing protocol then the user can provide the appliance with the proper
configuration via the contextualization parameter ONEAPP_K8S_LOADBALANCER_CONFIG
(Base64 encoded).

Data Model

A Kubernetes cluster can be created in any OpenNebula cluster by importing the corresponding
Marketplace appliance in the cluster datastores and then instantiating the VM or the OneFlow
Service template, according to the chosen deployment model (single node or multi-node).

The instantiation can be customized by the user through different configuration parameters
reported in Table 5.2.1.

Parameter Default Default
ONEAPP_K8S_ADDRESS routable IP Master node address or network (in CIDR format)
ONEAPP_K8S_NODENAME hostname Master Node Name
ONEAPP_K8S_PORT 6443 Kubernetes API port on which nodes communicate
ONEAPP_K8S_TAINTED_MASTER | no Master node acts as control-plane only (you will need

to add worker nodes)

ONEAPP_K8S_PODS_NETWORK 10.244.0.0/16 Kubernetes pod network - pods will have IP from this
range

ONEAPP_K8S_ADMIN_USERNAME | admin-user Ul dashboard admin account - K8s secret’s token is
prefixed with this name

Table 5.2.1: Attributes for K8s controllers

New worker nodes can join the already running Kubernetes cluster if they are provided with the
contextualization parameters stated in Table 5.2.2.

Parameter Default
ONEAPP_K8S_ADDRESS Master node IP address
ONEAPP_K8S_TOKEN Secret token - to add worker node to the cluster

Version 1.0 3 November 2021 Page 37 of 50

https://metallb.universe.tf/concepts/bgp/

ONEedge - 880412 D3.3. Software Report - ¢ w

ONEAPP_K8S_HASH Secret hash - to add worker node to the cluster

Table 5.2.2: Attributes for K8s nodes

In order to correctly parameterize the Load Balancer MetalLB available in the K8s appliance,
two configuration parameters have been added for the Load Balancer service type:

e ONEAPP_K8S_LOADBALANCER_RANGE[0-9] is used to configure the LoadBalancer
type of services. The value must be a range (or multiple ranges by adding more
parameters with numbered suffix), or LoadBalancer IP range (can be used multiple
times with numbered suffix)

e ONEAPP_K8S LOADBALANCER_CONFIG: if the user is capable of setting up the
network for this dynamic routing protocol then the user can provide the appliance with
the proper configuration via the contextualization parameter

As an example, let’s see how the OpenNebula contextualization parameters can be used to
generate a configMap for ARP load balancing in the K8s appliance.

ONEAPP_K8S_LOADBALANCER_RANGE1=192.168.10.100-192.168.10.200
ONEAPP_K8S_LOADBALANCER_RANGE2=192.168.20.100-192.168.20.200
ONEAPP_K8S_LOADBALANCER_RANGE3=192.168.30.100-192.168.30.200

Figure 5.2.3: LoadBalancer parameters defining external IPs

Starting from the attribute values in Figure 5.2.2, the contextualization scripts made available
in this cycle within the K8s appliance will render the configMap depicted in Figure 5.2.3 based
on the ONEAPP_K8S_LOADBALANCER_RANGE attribute value.

apiVersion: vi
kind: ConfigMap
metadata:
namespace: metallb-system
name: config
data:
config: |
address-pools:
- name: default
protocol: layer2
addresses:
- 192.168.10.100-192.168.10.200
- 192.168.20.100-192.168.20.200
- 192.168.30.100-192.168.30.200

Figure 5.2.4: ConfigMap needed to configure K8s MetalLB

Version 1.0 3 November 2021 Page 38 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

[SR5.5] Edge Market GUI Developments

Description

In order to meet all the requirements to consume edge and cloud resources from the ONEedge
web interface, it has become necessary to extend the current OpenNebula GUI. This has proven
difficult due to the technical debt of a web application over a decade old, which in turn has
motivated a rewrite of the interface from scratch using a modern web development framework
such as React/Redux, taking the opportunity to bring new multi-cloud and edge functionality to
the interface.

Requirements and Specifications

The new Sunstone interface—which is in Beta state in OpenNebula 6.2—aims to replace the
decade-old Sunstone web interface based on Ruby Backend technologies and JQuery Frontend
technologies. Requirements can be succinctly expressed as follows:

Cover ALL functionality offered by the current Sunstone ruby web interface
Use a modern web development framework that ensures future sustainability and
extensibility to adapt to the dynamic edge landscape
Backend in Node.js and Frontend in React/Redux
Reuse FireEdge server, enable multi-app Backend delivery for OneProvision GUI and
new Sunstone

e Enable the deployment of workloads over different OpenNebula clusters and edge
clusters

Backend Architecture and Components

Figure 5.5.1 shows the architecture of the ONEedge web interface server.

Client XMLRPC
> ONED
Apps (J5) Request
(HTTR)
Sunstone Response ZENDESK
(HTTP)
- Server (NODEJS) hitp
request
Praovision
‘—I—b VCEMTER
Command
oned
A "
Websocket
(birectional)

Figure 5.5.1: Example of FireEdge architecture

The server Backend is composed of multiple calls to different services (XMLRPC, HTTP request,
etc.) that depend on them. The information flow is depicted in Figure 5.5.2.

Version 1.0 3 November 2021 Page 39 of 50

ONEedge - 880412

D3.3. Software Report - ¢ ‘gﬂ

Receive de HTTP

Request

get optional
parameters

v

get optional query
parameters

organizate the
params for XMLRPC organizate the
function params for function
connect with ONE
AMLRPC
Execute function
'L (its behavior depends on
the function {Zendesk,
Veenter, etc))
send XMLRPC
reguest

get XMLRPC error

¥

Update websocket get XMLRPC
access global var response data

h

generate HTTP
response

[

Emit HTTP response

Figure 5.5.2: FireEdge information flow

The behavior changes depending on the resource given in the request: a) if it is an existing ONE
XMLRPC command—i.e., it is served by OpenNebula core daemon, oned—, the logic flow

Version 1.0

3 November 2021 Page 40 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

depicted in Figure 5.5.2 will be executed; b) on the other hand, if the resource is from Zendesk,
vCenter, provision, Sunstone, etc., it depends on the behavior defined in the function.

XMLRPC Commands

XMLRPC commands are defined in the folder fireedge/server/utils/constants/commands. Inside
each of the files (listed in Figure 5.5.3) there is a JSON file describing each of the XMLRPC
commands implemented by the OpenNebula core.

fireedge/server/utils/constants/commands
F— acl.js

F— cluster.js
— datastore.js
— documents. js
F— groups.js
F— hooks. js

F— host.js

F— image.js

F— index.js

F— market.js
F— marketapp.js
— secgroup.js
F— systenm.js
— template.js
F— user.js

F— vdc.js

F— vm.js

F— vmgroup.js
F— vn.js

F— vntemplate. js
— vrouter.js
L— zone.js

Figure 5.5.3: FireEdge command path

An example of the model followed to create a datastore resource can be found in Figure 5.5.4.

const DATASTORE_ALLOCATE = 'datastore.allocate’

const Actions = {
DATASTORE_ALLOCATE
}

module.exports = {
Actions,
Commands: {
[DATASTORE_ALLOCATE]: {
// inspected
httpMethod: POST,
params: {
template: {
from: postBody,
default: "'
}}
cluster: {
from: postBody,
default: -1

Figure 5.5.4: ONE command example

Version 1.0 3 November 2021 Page 41 of 50

https://docs.opennebula.io/6.0/integration_and_development/system_interfaces/api.html
https://docs.opennebula.io/6.0/integration_and_development/system_interfaces/api.html

ONEedge - 880412 D3.3. Software Report - ¢ w

Function commands

Function commands are defined within fireedge/src/server/routes/apilocation, which contains
folders (listed in Figure 5.5.5) implementing all the logic needed to define the Backend routes.

fireedge/src/server/routes/api
— 2fa

| — index.js
— string-route.js
— tfa-functions.js
tfa.js

auth-functions.js
auth.js
functions.js
string-routes.js
index.js

files.js
functions.js
string-routes.js
index.js

functions.js

schemas. js
service_template-functions.js
service-functions.js
service_template.js
service.js

string-routes.js

index.js

TTTTTTTT S ITTT ITTTT T

(o]

o
=
o
<
&
0
o
El

functions.js
provider-functions.js
provider.js
provision_template-functions.js
provision_template.js
provision-functions.js
provision.js

schemas. js

string-routes.js

index.js

[TTTTTTTTT

sunstone.js
string-route.js
sunstone-functions.js
index.js

[TTT

|

|

|

|

|

|

|

|

|

|
— sunstone
|

|

|

|
—

support
index.js

command-flags.js
functions.js
string-routes.js
vcenter.js
index.js

zendesk-functions. js
zendesk. js
string-routes.js
functions.js
index.js

[TTTT ITTTT T

— functions.js
— string-routes.js

— vm.js

Version 1.0 3 November 2021 Page 42 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

| L— index.js
L— {ndex.js

Figure 5.5.5: FireEdge functions command path
The structure of each of the folders is as follows:

e Index.s: joins the logic of each of the routes. It must return an object with the
functions that will be public (they do not require user validation) as well as the private
ones. An example is given in Figure 5.5.6.

Const { addFunctionAsRoute, setFunctionRoute } = require('server/utils/server')
const { routes: vmRoutes } = require('./vm')
const { VM } = require('./string-routes')

const privateRoutes = []
const publicRoutes = []

/**

Set private routes.

@param {string} path - principal route

*

*

* @param {object} routes - object of routes

*

* @param {Function} action - function of route

*/
const setPrivateRoutes = (routes = {}, path = '', action = () => undefined) => {
if (Object.keys(routes).length > 0 && routes.constructor === Object) {

Object.keys(routes).forEach((route) => {
privateRoutes.push(
setFunctionRoute(route, path,
(req, res, next, connection, userId, user) => {
action(req, res, next, routes[route], user, connection)
}
)
)
b
}
}

/*-k

* Add routes.

*

* @returns {Array} routes

*/

const generatePrivateRoutes = () => {
setPrivateRoutes(vmRoutes, VM, addFunctionAsRoute)
return privateRoutes

}

const functionRoutes = {
private: generatePrivateRoutes(),
public: publicRoutes

}

module.exports = functionRoutes

Figure 5.5.6: index.js example

e [command].js: Defines the URL and the parameters of the function. As per the example
in Figure 5.5.7, the command to perform a Save As Template over a running VM can be
requested through the following URL:
http://<FIREEDGE_URL>:2616/fireedge/api/vm/save/<ID>

Version 1.0 3 November 2021 Page 43 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

const { httpMethod, from: fromData } = require('server/utils/constants/defaults')
const { saveAsTemplate } = require('./functions')
const { POST } = httpMethod

const routes = {
[POST]: {
save: {
action: saveAsTemplate,
params: {
id: {
from: fromData.resource,
name: 'id'
3,
name: {
from: fromData.postBody,
name: 'name’

const authApi = {
routes

}

module.exports = authApi

Figure 5.5.7: [COMMAND].js example

e String-routes.js: defines the url of a particular resource (Figure 5.5.8 defines a route to
access a VM template contents through http:
//<FIREEDGE_URL>:2616/fireedge/api/vm/save/<ID>)

const VM = 'vm'

const Actions = {
VM

}

module.exports = Actions

Figure 5.5.8: string-routes.js example

e Functions.js: defines each of the functions of each route, which receives the following
parameters (Save As Template function example is given in Figure 5.5.9):
Res: the HTTP request
Next: the express stepper function
Params: It is an object with the parameters required for the function; they are
defined in the file [COMMAND].js
o User:itis the user data

const saveAsTemplate = (res = {}, next = defaultEmptyFunction, params = {}, userData
={H ={
let rtn = httpBadRequest
if (params && params.id && params.name) {
const paramsCommand = ['save', ‘${params.id}’, ‘${params.name}’]

const executedCommand = executeCommand(defaultCommandVM, paramsCommand,
prependCommand)

const response = executedCommand.success ? ok : internalServerError
let message = "'
if (executedCommand.data) {

Version 1.0 3 November 2021 Page 44 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

message = executedCommand.data.replace(regexpSplitLine, '')

}
rtn = httpResponse(response, message)
}
res.locals.httpCode = rtn
next()
}
const functionRoutes = {

saveAsTemplate

}

module.exports = functionRoutes

Figure 5.5.9: functions.js example

Authentication

User authentication is done via XMLRPC using the OpenNebula authorization module. If the
username and password matches with the serveradmin data, the user's request will be granted,
the session data will be saved in a global variable (cache-nodejs), and a JWT (JSON Web Token)
will be generated that must be sent in each call that requires authentication.

For the creation of the JWT, the data of the user ID, User, and ONE's token are used, and are
protected by a key that is generated randomly when the FireEdge is executed for the first time.
This key can be found in /var/lib/one/.one/fireedge_key. The JWT lifetime can be configured in
the fireedge_server.conf configuration Ffile.

Configuration files

FireEdge Backend is made up of multiple calls to different services. These are divided into
applications (currently OneProvision and Sunstone), each one managing its own configuration
file. The general structure of FireEdge configuration files as modified in this cycle can be found
in Figure 5.5.10.

/etc/one
— fireedge-server.conf
— provision
| — provider.d
| L— provision-server.conf
L— sunstone
— admin
b— user
— sunstone-server.conf
L— sunstone-views.yaml

Figure 5.5.10: FireEdge configuration path

Specific configuration for the Sunstone Beta appliance served by FireEdge is listed in Figure
5.5.11.

Prepend for oneprovision command
vcenter_prepend_command: "'

Prepend for sunstone commands
sunstone_prepend: ''

Support
support_url:
support_token:

Version 1.0 3 November 2021 Page 45 of 50

https://jwt.io/

ONEedge - 880412 D3.3. Software Report - ¢ w

this display button and clock icon in table of vm
leases:
suspend:
time: "+1209600"
color: "#000000"
warning:
time: "-86400"
color: "#085aef"
terminate:
time: "+1209600"
color: "#elef08"
warning:
time: "-86400"
color: "#ef2808"

Figure 5.5.11: Sunstone-server.conf example

Frontend Architecture and Components

An important part of managing OpenNebula through an interface is the use of forms and lists
of resources. For this reason, we decided to extract some of this logic in configuration files. We
differentiate between the view files located in /etc/one/fireedge/sunstone/<view_name> and
the master file located in /etc/one/fireedge/sunstone/sunstone-view.yaml that orchestrates the
views according to the primary group the user belongs to.

These view files, with yaml extension, describe the behavior of each of the resources within the
application. Each file will contain a series of sections within it:

Name of the resource

Actions available regarding the resources

List of criteria to filter the resource list

Information tabs available to show the detailed information of a resource
Sections that will be shown in a dialog

An example of the definition of a particular resource can be found in Figure 5.5.12.

resource_name: “VM_TEMPLATE”

actions:
create_dialog: true
delete: false

filters:
label: true

info-tabs:
info:
enabled: true
information_panel:
enabled: true
actions:
rename: true
permission_panel:
enabled: true
actions:
chmod: false

dialogs:
create_dialog:
information: true

Version 1.0 3 November 2021 Page 46 of 50

ONEedge - 880412 D3.3. Software Report - ¢ w

capacity: true
vcenter:
enabled: true
not_on:
- kvm
- Ixc
- firecracker
network: true
storage: false

Figure 5.5.12: Example of VM Template view yaml

Using the view files as a starting point, the interface generates the available routes and defines
them in a menu.

To draw the resource lists, we have developed a component
(fireedge/src/client/components/Tables/Enhanced) that allows us to define their context: actions
over one or a group of elements, filtering, sorting, paging. Unlike the current, ruby-based
Sunstone, it's the behavior of requests in parallel which allows the use of the interface with
greater flexibility and fluidity.

Actions on resources permitted to users can proceed to a common form or a stepper form.
Forms will be located in fireedge/src/client/components/Forms.

Both forms can be created with the functions located in fireedge/src/client/utils/schema.js,
createForm and createSteps. For the creation of these forms we use a schema builder to parse
and validate the values. An example can be found in figure 5.5.13.

const NAME = {
name: ‘NAME’,
label: ‘New Image name’,
type: ‘text’
tooltip: ‘Name for the new Image when the disk will be saved.’

}

const FIELDS
const SCHEMA

[NAME]
object({ NAME: string().trim().required() })

const SaveAsDiskForm = createForm(SCHEMA, FIELDS)

Figure 5.5.13: Example of common web form used in Sunstone

Data Model

Figure 5.5.14 shows how Sunstone renders a list of resources. FireEdge server checks that the
user from Sunstone is authenticated, then sends the request to OpenNebula. The information
that OpenNebula returns is in XML format, so we need to transform it into JSON to facilitate
the manipulation from the Frontend.

Version 1.0 3 November 2021 Page 47 of 50

ONEedge - 880412 D3.3. Software Report - ¢ W

OpenNebula FireEdge server Sunstone GUI

renderList()

sendRequest()

idRequest=
authenticate()

[authenticated]
sendRequest()

Y

U

sendResponse()
parse=xmiToJson()

[ison]
sendResponse()

[rerender]

Figure 5.5.14: Sequence diagram of Sunstone GUI render process

Queries to get the pool resource from OpenNebula are greatly optimized, which ensures a
swift response of the interface. If a large amount of certain types of resources are present (for
example VMs or Hosts), a performance strategy that consists of making queries with intervals
is implemented. Thus, the representation of the first interval list of resources is faster and the
rest of the queries are kept in the background.

API and Interfaces

Sunstone routes exposed by the FireEdge Backend are divided into two categories:

OpenNebula commands, described in the official documentation

Functions, which are routes whose result depends on the function they execute. See
Figure 5.5.15 for a list of available functions in specific FireEdge routes. Only
Sunstone-relevant routes are shown (i.e., no OneProvision routes are shown)

Auth

Method Route Description
POST /fireedge/api/auth Authenticate User
TFA
POST /fireedge/api/tfa Configure 2fa to user
GET /fireedge/api/tfa Get QR resource

Version 1.0 3 November 2021 Page 48 of 50

https://docs.opennebula.io/6.0/integration_and_development/system_interfaces/api.html

ONEedge - 880412

D3.3. Software Report - ¢

DEL /fireedge/api/tfa Delete 2fa to user
File
POST /fireedge/api/files Upload file
GET /fireedge/api/files/1ist/<ID> Get file uploaded (the ID is
optional)
PUT /fireedge/api/files/update/<ID> Update file
DEL /fireedge/api/files/delete/<ID> Delete file
OneFlow
GET /fireedge/api/service_template/list/<ID> Get the service template (the ID
is optional)
POST /fireedge/api/service_template/create Create a service template
POST /fireedge/api/service_template/action/<ID> Add action
PUT /fireedge/api/service_template/update/<ID> Update service template
DELETE /fireedge/api/service_template/delete/<ID> Delete Service template
GET /fireedge/api/service/list/<ID> Get the service (the ID is
optional)
POST /fireedge/api/service/action/<ID> Add action to service
POST /fireedge/api/service/scale/<ID> Add scale to service
POST /fireedge/api/service/role-action/<ROLE_ID> | Add role to service
/1D
POST /fireedge/api/service/sched_action/<ID> Add Schedule action to service
PUT /fireedge/api/service/sched_action/<ID>/<ID | Update Schedule action to
_SCHED_ACTION> service
DELETE /fireedge/api/service/delete/<ID> Delete service
DELETE /fireedge/api/service/sched_action/<ID>/<ID | Delete Schedule action to
_SCHED_ACTION> service
Sunstone
GET /fireedge/api/sunstone/views Get sunstone views
GET /fireedge/api/sunstone/config Get sunstone config
vCenter
POST /fireedge/api/vcenter/import/<vObject> Import vObject
POST /fireedge/api/vcenter/cleartags/<ID> Clear tags
POST /fireedge/api/vcenter/hosts/<vCenter> Import hosts
GET /fireedge/api/vcenter/list/<ID> Get list vCenter
GET /fireedge/api/vcenter/listall/<ID> Get list_all vCenter
Version 1.0 3 November 2021 Page 49 of 50

ONEedge - 880412 D3.3. Software Report - ¢ ‘gﬂ

VM

POST /fireedge/api/vm/save/<ID> Save VM to VM template
Zendesk

POST /fireedge/api/zendesk/login Login to zendesk

POST fireedge/api/zendesk/create Create ticket

PUT fireedge/api/zendesk/update Update ticket

GET fireedge/api/zendesk/list/<ID> Get tickets (the ID is optional)
GET fireedge/api/zendesk/comments/<ID> Get comments of ticket

Table 5.5.15: FireEdge function routes

Version 1.0 3 November 2021 Page 50 of 50

