ONEedge.io

A Software-defined Edge Computing Solution

D4.3. Infrastructure Report - ¢

Infrastructure Incremental Report
Version 1.0

3 November 2021

Abstract

This report, delivered at the end of the Third Innovation Cycle (M17-M23), describes in detail
the new Continuous Integration infrastructure management process that has been totally
redesigned during this cycle to be fully automated, ensuring that it can be deployed from
scratch within hours in either local infrastructure or public cloud providers (e.g AWS or Equinix).
This new dynamic and agile approach for the testing and packaging process of the ONEedge
software uses the edge cloud reference infrastructure described in the second version of this
deliverable (D4.2. “Infrastructure Report”). This report also includes a detailed list of the tests
and extensions implemented to verify the functionality of the software developed during the
cycle for each component and software requirement.

Zﬁggaq Copyright ©® 2021 OpenNebula Systems SL. All rights reserved.

This project has received funding from the European Union’s Horizon 2020 Research and
Innovation Programme under Grant Agreement No 880412.

©l00) This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
' CMTHETS |nternational License.

ONEedge - 880412 D4.3. Infrastructure Report - ¢ g‘?

Deliverable Metadata

Project Title: A Software-defined Edge Computing Solution

Project Acronym: ONEedge

Call: H2020-SMEInst-2018-2020-2

Grant Agreement: 880412

WP number and Title: WP4. Demo and Operational Infrastructure

Nature: R: Report

Dissemination Level: PU: Public

Version: 1.0

Contractual Date of Delivery: | 30/9/2021

Actual Date of Delivery: 3/11/2021

Lead Authors: Vlastimil Holer, Rubén S. Montero and Constantino Vazquez

Authors: Sergio Betanzos, Ricardo Diaz, Jim Freeman, Christian Gonzdlez, Alejandro
Huertas, Shivang Kapoor, Jorge M. Lobo, Jan Orel and Petr Ospaly

Status: Submitted

Document History

Version Issue Date Status' Content and changes

1.0 3/11/2021 Submitted First final version of the D.4.3 report

" A deliverable can be in one of these stages: Draft, Peer-Reviewed, Submitted and Approved.

Version 1.0 3 November 2021 Page 2 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢ %

Executive Summary

This report, delivered at the end of the Third Innovation Cycle (M17-M23), describes in detail
the new Continuous Integration infrastructure management process that has been totally
redesigned during this cycle to be fully automated, ensuring that it can be deployed from
scratch within hours in either local infrastructure or public cloud providers (e.g AWS or Equinix).
This new dynamic and agile approach applies the automation and multi-cloud features
developed in ONEedge to the testing and packaging process of the ONEedge software itself.

The new Continuous Integration infrastructure management process uses the highly
distributed cloud infrastructure for Edge Computing described in deliverable D4.2.
“Infrastructure Report”. This edge infrastructure is also being used in the actual
demonstrations of the project’s capabilities in real life situations and to deploy validation cases
for different scenarios, described in D4.6. “Deployment of Validation Cases and
Demonstrations”. The infrastructure has been extended with nodes from the new providers
supported during the cycle: Google Compute, Digital Ocean, Vultr, and multiple on-premises
locations.

For each software requirement, this report also includes a detailed list of the extensions
implemented to verify the functionality of the software developed in ONEedge during the
Third Innovation Cycle (M17-M23). Also, for each requirement, we list the verification scenarios
that have been addressed and a description of the functionality tested to fulfill the proposed
scenarios.

During the Third Innovation Cycle (M17-M23), the project mostly focused on those software
requirements needed to achieve the third milestone in M23, which is the base functionality
required to meet networking & storage integration, and mostly its release as a standalone
managed service (On-demand Edge Cloud Service). The work carried out during this Third
Innovation Cycle involved software requirements from components CPNT1, CPNT3, CPNT4 and
CPNTS5, with a special focus on the completion and integration of all components to release a
first version of the On-demand Edge Cloud Platform service (CPNT1) and the deployment and
provision of edge infrastructures (CPNT4).

Version 1.0 3 November 2021 Page 3 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢

Table of Contents

1. Innovative Agile Cl Infrastructure
1.1. Architectural Overview
1.2. Remote On-Demand Deployment
1.3. Services
1.4. Microenvs

1.5. Jenkins Pipeline and Configuration as Code

2. Software Requirements Verification
2.1. Edge Instance Manager (CPNT1)
2.2. Edge Workload Orchestration and Management (CPNT2)
2.3. Edge Provider Selection (CPNT3)
2.4. Edge Infrastructure Provision and Deployment (CPNT4)
2.5. Edge Apps Marketplace (CPNT5)

o O U1 un

11

15
15
17
18
19
21

Version 1.0 3 November 2021

Page 4 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢ %

1. Innovative Agile Cl Infrastructure

1.1. Architectural Overview

The infrastructure management process has been totally redesigned during this cycle to be
fully automated, ensuring that it can be deployed from scratch within hours in either local
infrastructure or public cloud providers (e.g AWS or Equinix). The main components of the
architecture are:

e Jenkins VM: the server where Jenkins server runs. The installation is fully automated
by Ansible playbooks, and the Jenkins configuration is defined in a declarative way
using JCasC.?

e Services VM (usually deployed along Jenkins): This VM provides multiple services that
act as requirements of the different Jenkins Pipelines:

o Packages. Once the software packages are built, they are published internally in
the Services VM.

o HTTP. An HTTP server is deployed to act as an image repository for deploying
the different VMs required for building and testing.

o DNS: ADNS serveris deployed to resolve the local infrastructure domain
names.

o Many of the build dependencies are architecture and distribution independent
and are built only once before building the packages; this process is also
executed in the services VM.

CTEE T

! Pipelines | I JCasC i r Packages | r HTTP |
1 [| ininiuiniuiutatutuiiiininiuintntutuiuing
i E ‘-----------'! i DS i
i [" T i
| i 1 Scheduler | | Build Dependencies |
L L R e N

< Private Network (internal or AWS VPC) >

OpenNebula

ey

L §

i Build VM , Microenv

L)
1
i
i
1
i
[}
i
i

-
i
1
i
1
1
i
1
1
i
1
i
1
1
i
]
1
i
1
1
i
qm——————
8
-

Figure 1.1.1 Overview of the Cl infrastructure

e OpenNebula: The OpenNebula node is intended to be a self-contained installation (i.e
containing both Frontend and hypervisor node) and serves as Jenkins executor
provider. The number of concurrent executors (i.e. number of concurrent integration

2 https://www.jenkins.io/projects/jcasc/

Version 1.0 3 November 2021 Page 5 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢ w

tests) is limited in the Jenkins configuration. Integration tests are structured on
microenvy, the unit integration unit.

In order to automate the process a set of tools has been developed:
e Deploy tool: Automates the deployment and configuration of the entire infrastructure.
e Microenv deployment tool: automates deployment of microenvs. A microenvis the

basic unit for testing. It defines basic OpenNebula environments, typically containing
one Frontend and two hypervisor nodes.

o Build scripts and other supporting tools: many other minor tools have been deployed
and included in the different Pipelines to automate processes such dependencies
building, packages building, or test execution.

1.2. Remote On-Demand Deployment

The deploy tool is written in Ruby and it allows the deployment of a new remote (or
on-premises) infrastructure from scratch. There are three operations that can be performed,
namely: deploy, reconfigure, and delete. In this section we provide a detailed description of
each of them.

Deploy

This action will deploy a new infrastructure in the remote provider (AWS or Equinix) or locally
using existing infrastructure. The signature of the command is:

./deploy <INFRA YAML>

Figure 1.2.1: Deploy operation signature

Input Files

The deploy command uses two input files: an infrastructure description and a secrets file. Both
files are written in YAML format and have the following structure:

e Infra YAML: describes the infrastructure that is going to be deployed, the physical
servers and the services that are running on them. In this file, there is an entry for each
server that is going to be deployed. This entry contains:

o Name of the server (this is the entry itself).

o Public IP ofthe server, for remote providers this is left blank and the tool will
fill the information.

o Private IP of the server, for remote providers this is left blank and the tool
will fill the information.

o Playbooks, list of Ansible playbooks that are going to be used to configure the
server.

o VM type, thisis only used for remote providers and indicates the server specs
that are going to be used.

o 0S, thisis only used for remote providers and indicates the operating system
that needs to be installed on the server.

o Executoris aboolean variable that indicates that the server is going to be an
executor in Jenkins.

o Capacity works together with executor, so when executor is set to true, this
variable indicates the number of available threads in Jenkins.

services:

Version 1.0 3 November 2021 Page 6 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢

public:
private: "'
playbooks:
- dns
- http
- jenkins
- prebuild-vm
vm_type: t2.large
os: ami-0eb471e022a0d8fc6

epsilon:

public:
private: "'
playbooks:

- opennebula
vm_type: 13.metal
os: ami-0eb471e022a0d8fc6
executor: true

capacity: 50

Figure 1.2.2: Example of AWS deploy file

The above file will create two physical servers:

e Services contain DNS server, HTTP server, Jenkins and pre-build vm (this is used

for compiling OpenNebula).

e Epsilon contains the OpenNebula that is going to deploy all the virtual

machines used for testing.

e Secrets YAML: contains all the secrets (passwords and SSH keys) that are needed to

deploy all the services.

Deploy Steps

1. Read environment variables: all the information that the tool needs to connect to the

remote provider is provided via ENV variables because this is more secure.

2. Deploy the resources in the remote provider. This is done using Terraform and the

information from infra YAML and ENV.

3. Prepare all the information for Ansible: playbooks, inventory, variables, etc.
4, Trigger Ansible command to configure all the servers.

Output Files

All the information about the deployment is stored in a folder. This is used to reconfigure the

infrastructure, e.qg.:

example-20211019-152534
— ansible.cfg

F— deploy.tf

— fetch

F— group_vars

F— inventory

F— output.16c6984899
— requirements.yaml
F— roles

— services.yaml

F— site.yaml

Version 1.0 3 November 2021

Page 7 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢ W

L— terraform.tfstate

Figure 1.2.3: Output directory

The tool also prints a report of the resources that have been deployed, e.g.:

* VM services with dns,http,jenkins,prebuild-vm running on 147.75.85.17 and 10.80.122.129
* VUM epsilon with opennebula running on 147.75.80.33 and 10.80.122.131

All the information about the deployment is in deployments/20211015-173516

Figure 1.2.4: Deploy action output report
Reconfigure

This operation reconfigures an existing infrastructure using the files generated by deploy
action. The idea of this operation is to be able to add new changes to an infrastructure without
deploying new servers. The signature of the command is:

./deploy deployments/<DEPLOY FOLDER>

Figure 1.2.5: Reconfigure operation signature

Steps
1. Read all the information for Ansible: playbooks, inventory, variables, etc.
2. Trigger Ansible command to configure all the servers.

Delete

This operation deletes an existing infrastructure using the files generated by deploy action. If
the infrastructure is deployed in a remote provider, this will also delete the servers; if it is not,
just the deployment information will be deleted. The signature of the command is:

./deploy -d deployments/<DEPLOY FOLDER>

Figure 1.2.6: Reconfigure operation signature

All the information about the deployments is committed into the private repository that stores
the tool and all the Ansible information. This can be used by any member of the team to
reconfigure the infrastructure with his/her changes.

1.3. Services

A service is a combination of the files needed by Ansible to configure it and specific variables
that the service needs. These services are included in the infra.yaml file described in the
previous section. The supported services are the following:

e DNS:installs a DNS server that is able to resolve the virtual machines’ IPs. It also installs
all the dependencies needed by OpenNebula to trigger the hook that updates the DNS
record. The site.yaml is the following:

- hosts: dns
vars_files:

Version 1.0 3 November 2021 Page 8 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢ w

- '../../secrets.yaml'
remote_user: root
roles:
- dnsmasq # Install and configure dnsmasq
- resolv.conf # Update resolv.conf with dnsmasq IP
- ruby # Install Ruby

Figure 1.3.1: DNS site.yaml

HTTP: installs an Nginx server. This is used to store the resulting build when building
OpenNebula and the images that are used for testing. The service, apart from installing
the Nginx, downloads all the images for testing. The site.yaml is the following:

- hosts: http
vars_files:
- '../../secrets.yaml'
- "{{ './group_vars/public.yaml' if on_premises|default('True') == 'True'
else './group_vars/private.yaml' }}"

remote_user: root
roles:
- resolv.conf # Update resolv.conf with dnsmasq IP
- role: nginx # Install and configure Nginx
download_images:
- alpine-testing.qcow2
- alpine-testing.raw
- centos7.qcow?2
- fc_fs
- fc_kernel
- Ixc/1lxc-nginx
- 1xc/1lxc-qcow2-ext4
- Ixc/xc-raw-xfs
- 1xd.qcow2
- Ixd-xenial.qcow2
- Ixd_xfs.qcow2
- ubuntu1604_docker.gcow2
- windows2012.qcow2

context:

- alma8.qcow2

- alpine310.qgcow2
- alpine311.gcow2
- alpine312.gcow2
- alpine313.qcow2
- alpine314.gcow2
- alt9.qcow2

- ubuntu2104.qcow?2
- windows2012.qcow2

- createrepo_c # Build and install createrepo_c tool
- iptables

Figure 1.3.2: HTTP site.yaml

Version 1.0 3 November 2021 Page 9 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢ w

e Jenkins: installs Jenkins and configures everything needed to be able to run
OpenNebula tests. It also configures all the pipelines. The site.yaml is the following:

- hosts: jenkins
vars_files:
- '../../secrets.yaml'
remote_user: root

roles:
- resolv.conf # Update resolv.conf with dnsmasq IP
- jenkins # Install and configure Jenkins

Figure 1.3.3: Jenkins site.yaml

e OpenNebula: installs the OpenNebula that is used to deploy all the virtual machines to
run the Cl tests. It also configures the networking so virtual machines can communicate
with each other. Apart from installing the Frontend it also installs the node, so the
same server is used for running the VMs. The site.yaml is the following:

- hosts: opennebula
vars_files:
- '../../secrets.yaml'
- "{{ './group_vars/public.yaml' if on_premises|default('True') == 'True'
else './group_vars/private.yaml' }}"

remote_user: root

roles:
- resolv.conf # Update resolv.conf with dnsmasq IP
- ansible # Install Ansible
- opennebula-repository # Add OpenNebula repository
- role: opennebula-server # Install OpenNebula packages

opennebula_server_vmm_kvmm_cpu_model: 'host-passthrough'
opennebula_server_one_auth_users:
- { user: oneadmin, home: /var/lib/one }
- { user: one, home: /home/one }
- role: opennebula-node-kvm # Install OpenNebula node KVM
opennebula_node_kvm_param_nested: True

- networking # Install ifup/down

- tuntap # Create tap0

- bridge # Create brpub bridge

- iptables # Nat + firewall

- one-tools # Install One Tools

- bootstrap-opennebula-server # Create OpenNebula objects

- infra.one-ssh-keys # Copy oneadmin key to services one user
- hosts: dns

remote_user: root
roles:
- infra.one-ssh-keys # Copy oneadmin key to services one user

Figure 1.3.4: OpenNebula site.yaml

e Postfix: installs and configures postfix to be able to send emails from all the servers;
this is installed in all the machines, as all of them must be able to send emails. The
site.yaml is the following:

Version 1.0 3 November 2021 Page 10 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢ w

- hosts: postfix
vars_files:
- '../../secrets.yaml'
remote_user: root
roles:
- resolv.conf # Update resolv.conf with dnsmasq IP
- infra.postfix # Install and configure postfix

Figure 1.3.5: Postfix site.yaml

e Pre-build-VM: configures the virtual machine that is used to build OpenNebula
packages. The site.yaml is the following:

- hosts: prebuild-vm
vars_files:
- '../../secrets.yaml'
remote_user: root
roles:
- resolv.conf # Update resolv.conf with dnsmasq IP
- init-build # Install and configures everything for building VM

Figure 1.3.6: Pre-build-VM site.yaml
1.4. Microenvs

A microenv is the basic unit for defining a test environment. Its deployment is fully automated
and its definition can be fully customized by defining the corresponding set of YAML files. The
aim of this Flexible definition is to allow the deployment of microenvs with any of the various
supported combinations, including configuration of different sets of drivers (e.g. storage,
networking, authentication) or different Frontend deployment scenarios (e.g. HA, Federation).

Each microenv definition consists of a folder with the following structure:

kvm-ssh

F— bootstrap.yaml
F— defaults.yaml
F— extra.yaml

F— inventory

— postpare.sh
F— site.yaml

L— tests.yaml

Figure 1.4.1: Microenv folder tree
The content of the Files listed above is described in the following list:

e bootstrap.yaml: Contains the definitions of the resources that are going to be
automatically created within the microenv once the deployment is complete.

e defaults.yaml: Variables’ default values definition.

e extra.yaml: defines extra modification to the microenv VMs (e.g. different value of
CPU or Memory).

e inventory: Similar to an Ansible inventory file, it defines the hosts that are going to be
allocated for the microenv, typically one Frontend node and two hypervisor nodes.

Version 1.0 3 November 2021 Page 11 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢ w

e pre/postpare.sh: optional scripts that are executed automatically before and after the
microenv is configured.

e site.yaml: Ansible playbook containing the set of configurations that are required for
that microenv.

e tests.yaml: The list of tests that are going to be executed within the microenv.

Microenvs are deployed by a specific deployment tool. This tool follows the stages listed below
for deploying and configuring the microenvs:

e Initialization: the microenv information is automatically gathered from the files
defined above and every dependency is installed.

e Cleaning: in order to avoid collision and duplicates, the cleaning phase is triggered
before deploying the microenv VMs.

e Deployment: the microenv resources are allocated. This includes Virtual Network, VM
Groups, and VMs,

e Verification: once the microenv has been deployed, the verification phase ensures that
the microenv VMs are accessible via SSH using the corresponding domain name.

e Configuration: as soon as all the resources are available the microenv configuration is
triggered. During this phase, the microenv will be configured as defined in (site.yaml)
and every resource defined in bootstrap.yaml will be allocated.

e Testing (optional): if the corresponding option is set, once the microenv is ready, the
tests defined in tests.yaml will be automatically triggered.

e Cleaning: depending on the configuration, the microenv will be automatically
destroyed right after the tests are finished, or the destroy will be scheduled for a
specific time in the future (24 hours later by default).

1.5. Jenkins Pipeline and Configuration as Code

In order to improve the integration tests, a set of Jenkins Pipelines has been developed to
automate the building and testing of different OpenNebula products. The main requirements
for these Pipelines are:

e Flexibility: they should provide enough flexibility to be run for a different set of
resources and facilitate the development workflow.

e Performance: this should include the minimum requirements to improve performance
for both building and microenv deployment.

e Persistence: The Pipelines’ definition must persist inside the control version software
(Git+GitHub) and must be able to be automatically recreated.

Every Pipeline has been developed using a Jenkinsfile and the corresponding code is properly
committed and managed by the version control software. These files are automatically taken
during the infrastructure deployment and used to automatically create the required Pipelines.

Version 1.0 3 November 2021 Page 12 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢ %

1.5.1 Testing Pipeline

This is the main Cl Pipeline. It takes care of running the test for the specified set of microenvs.
It will either build the software packages using the specified version of the source code, or use
pre-existing packages.

The Pipeline has the following stages:
1. Checkout

During this stage the code with the different tools for automation building and
microenv deployment is gathered from the corresponding repository branches (both
repositories and branches can be customized).

2. Pre-build

When existing packages are not provided, the build of the source code is triggered
automatically. The pre-build stage is triggered before the build stage in order to build
the platform and architecture-independent components just once, and then to pass
them as artifacts to the build stage.

3. Build

After the pre-build stage, the build phase is triggered. During the build the software is
compiled in a compatible environment. This means an environment that has a
compatible architecture and platform. Apart from building the code, the software
packages are generated for the specified platforms (it can be fine tuned using the
Pipeline parameters). As a result of this phase the packages are published within the
HTTP server of the Services VM.

4. Readiness

Right after building the packages the specified set of microenvs is deployed within the
OpenNebula node. If the corresponding option is selected, tests will be triggered
automatically inside the microenvs. If not (depending on the Pipeline parameters) the
microenv will be left in the OpenNebula node to be used manually.

5. Summary
During this stage the Pipeline execution results are gathered. These contain:

e Tests results (if triggered)
e Build parameters used
e Microenv status (in case the deployment failed)

This information is formatted and sent via email to the email specified as a Pipeline
parameter. Also, when configured, a notification will reach a predefined Slack channel
referencing the testing results.

1.5.2 Context Pipeline

One of the main components of OpenNebula is the contextualization packages. These
packages are meant to be installed in the images used for deploying OpenNebula VMs and they
provide a wide range of configuration parameters for configuring the VMs on boot time. As
contextualization packages provide a large number of features and are supported for a wide
range of OS/Distributions and different versions of the same, the tests for the
contextualization packages are executed by a specific Pipeline that adds a set of performance
improvements for each individual case.

Version 1.0 3 November 2021 Page 13 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢ %

Specifically, instead of deploying the microenv and running the test sequentially (as done with
the test executed by the Testing Pipeline), just one microenv is deployed for each hypervisor,
and multiple images are tested concurrently within the same microenv:

e e o T A T — e — e — e — % —

o
o
°
o
°

0
°
o
°
°

Figure 1.5.1: Context Pipeline concurrent images testing
As opposed to the Testing Pipeline, the Context Pipeline requires pre-existing packages to be
passed as parameters. The Context Pipeline has the following stages:
1. Checkout

During this stage the code with the different tools for automation building and
microenv deployment is gathered from the corresponding repository branches (both
repositories and branches can be customized).

2. Deploy

At this stage, one microenv for each of the supported hypervisors is deployed using the
same automation tool as Testing Pipeline.

3. Testing

Once the microenvs are deployed, three images are tested concurrently inside each of
the microenvs (three different threads can be found for each hypervisor in Figure
1.5.1). The Pipeline logic controls the number of concurrent tests and uses a
thread-safe queue for storing the pending tasks.

4, Summary

After every test is finished, the results for each of them are gathered and a report is
generated. This report is sent via email to the email passed as parameter when
triggering the Pipeline.

Version 1.0 3 November 2021 Page 14 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢ w

2. Software Requirements Verification

This section includes a detailed list of the extensions implemented to verify the functionality of
the software developed in ONEedge during the Third Innovation Cycle (M17-M23). Tests and
extensions of the verification framework are detailed for each component and grouped for
each software requirement implemented during the cycle. For each requirement we include a
summary of the extensions performed in the testing and certification infrastructure. Also, for
each requirement, we list the verification scenarios that have been addressed and a description
of the functionality tested to fulfill the proposed scenarios.

2.1. Edge Instance Manager (CPNT1)

SR1.1. Simple Product Deployment

Status: DONE

Description: We have extended the previous tests that verify the containerized installation
to ONEedge. The process has been integrated in a new test suite that verifies the automatic
installation and configuration of a ONEedge hosted environment using the production
playbooks.

Verification Scenarios:

e [VS1.1.3] Automatically configure and install a Virtual Machine with the ONEedge
hosted bundle. Performs basic functionality tests to verify that the environment has
been properly installed and it is fully operational.

SR1.3. Instance Management

Status: DONE

Description: Testing has been extended to verify the life cycle of ONEedge hosted instances
using AWS cloud.

Verification Scenarios:

e [VS1.3.2] Creates a new hosted environment on AWS cloud. Check that integration
with ancillary services is correct (DNS).

e [VS1.3.3] Destroy a running hosted environment. Check that no AWS resources are
left in the cloud (including security groups, vpc and gateways).

SR1.4. Subscription Management

Status: IN PROGRESS

Description: Tests include several checks to verify the updates on the customer portal.

Verification Scenarios:

e [VS1.4.1] Test to verify that customers are automatically created in the support portal

Version 1.0 3 November 2021 Page 15 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢

when a new environment is created. Tests also check that labels are correctly set.

e [VS1.4.2] Test to verify that users are removed from Zendesk when the ONEedge
hosted environment is destroyed.

SR1.5. Web Control Interface (GUI)

Status: DONE

Description: The main interface to access the hosted environment is GitHub web portal. All

the ONEedge hosted operations can be triggered and queried through Github using common
operations like issue creation.

Verification Scenarios:

e [VS1.5.1] All the verification scenarios described above (especially VS1.3.2 and
VS1.3.3) use the Github API that resembles the GUI interaction offered by the GitHub
interface. In this way the interface used by the team is regularly tested.

Version 1.0 3 November 2021 Page 16 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢ %

2.2. Edge Workload Orchestration and Management (CPNT2)

No activity done during the cycle.

Version 1.0 3 November 2021 Page 17 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢ W

2.3. Edge Provider Selection (CPNT3)

SR3.1. Edge Provider Catalog Service

Status: DONE

Description: Q&A tests that covered the addition/modification and removal of providers
have been extended to exercise the dynamic load of providers by the FireEdge server,
relevant for the OneProvision GUI and framework.

Verification Scenarios:

e [VS3.1.2] Dynamic load of new providers is exercised through specific tests that
inject a new provider type in an existing OneProvision installation and execute the
existing test battery over the newly added provider. One of the existing providers
(Amazon AWS) is removed and added afterwards to cover this functionality.

SR3.4 Driver Maintenance Process

Status: DONE

Description: A dummy driver made following the new provider Development Guide is added
to the Q&A procedures, in which a set of tests used to exercise the whole automatic
provision procedure in ONEedge is applied to it in each iteration.

Verification Scenarios:

e [VS3.4.4] A dummy driver crafted following the guidelines on the Development
Guide passes the mentioned driver maintenance process tests.

Version 1.0 3 November 2021 Page 18 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢ W

2.4. Edge Infrastructure Provision and Deployment (CPNT4)

SR4.4. Inter-edge Networking Deployment Scenario

Status: DONE

Description: Communication between application or application components across edge
locations is performed through public IPs. The test suite verifies the proper use and
allocation of these IPs or the sharing of node IPs using port-forwarding.

Verification Scenarios:

e [VS4.4.1] A new public IP can be attached to a running VM in an edge node. The VM
automatically configures the IP to make use of it. The test checks L3 and L4
connectivity with basic tools (ping and netcat).

e [VS4.4.2] A portrange is successfully allocated and forwarded from the node. The
tests check that the VM can be accessed through the port range (L4 connectivity)
using basic tools (netcat).

e [VS4.4.3] AVM deployed in an edge location can access external services. The test
tries to access well known services (public DNS servers).

SR4.5. Drivers for Host Provision

Status: DONE

Description: ONEedge supports multiple edge/cloud providers. The tests in SR4.5 exercise
the APIs of these providers to verify the correct integration into ONEedge product.

Verification Scenarios:

e [VS4.5.1.] The existing tests in this verification scenario have been extended to
consider the new providers. The new tests verify the proper allocation of the
provider resources and the cleanup once the provision has been destroyed.

SR4.9. Support on-premises far-edge for resource provisioning

Status: DONE

Description: The ability to integrate data center and edge resources has been a recurrent
request from early adopters. In this cycle this functionality has been incorporated into
ONEedge. The test suite verifies the creation and configuration of on-premises provisions.

Verification Scenarios:

e [VS4.9.1.] Create a provision out of a pre-configured (minimal OS installation and SSH
access) pool of hosts. The test verifies the correct installation of the provision
elements and its operational status by creating simple VM workloads.

Version 1.0 3 November 2021 Page 19 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢ %

SR4.10. Support ARM for resource provisioning

Status: DONE

Description: The support for ARM based provisions has been included in this cycle (aarch64).
This enables us to create provisions using ARM instances (usually cheaper). The verification
scenario validates the ARM packages and their dependencies.

Verification Scenarios:

e [VS4.10.1.] Create a provision using ARM instances. The tests then perform basic
operations (create a VM, verify its network connectivity) to validate the ARM
distribution of FireEdge.

e [VS4.10.2] Perform and verify a Frontend installation using ARM architecture. This
test includes a subset of the full suite run on x86_64 architecture. The goal is to
perform a verification of the Frontend AMD packages.

Version 1.0 3 November 2021 Page 20 of 21

ONEedge - 880412 D4.3. Infrastructure Report - ¢ w

2.5. Edge Apps Marketplace (CPNTS5)

SR5.2 Built-in Management of Application Containers Engine

Status: IN PROGRESS

Description: The existing set of tests used to cover the Kubernetes and K3s appliances has
been extended to cover the new MetalLB.

Verification Scenarios:

e [VS5.2.4] A new set of tests to exercise the MetalLB (Load Balancer) functionality in
Kubernetes has been added to the Q&A process, where it is ensured that outside
requests are forwarded to different nodes sequentially.

SR5.5. Edge Market GUI Developments

Status: IN PROGRESS

Description: The new Sunstone is being rewritten but the same functionality as the existing
OpenNebula GUI needs to be maintained. The current set of tests that covers all the
interface Functionality therefore needs to be rewritten from RSpec to Cypress, in order to
use a more up to date web testing framework.

Verification Scenarios:

e [VS5.5.3] The subset of RSpec tests—part of the current OpenNebula Q&A
process—that covers the Virtual Machine and Virtual Machine functionality has been
rewritten using the Cypress web interface testing framework and added to the
regular end-to-end testing for the new Sunstone Beta component.

Version 1.0 3 November 2021 Page 21 of 21

