
ONEedge.io

A Software-defined Edge Computing Solution

D3.1. Software Report - a
Software Report v.1.0

31 July 2020

Abstract

This report summarizes the design of the technology components that have been implemented
as part of the First Innovation Cycle (M4-M9), as well as the full details of each of the software
requirements that are being addressed as part of the development of such components. For
each Software Requirement, this document provides a full description, a list of detailed
requirements and specifications, a description of its architecture and components, the data
model, and relevant changes applied to the API and Interfaces.

 Copyright © 2020 OpenNebula Systems SL. All rights reserved.

This project has received funding from the European Union’s Horizon 2020 Research and
Innovation Programme under Grant Agreement No 880412.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

ONEedge - 880412 D3.1. Software Report

Deliverable Metadata

Project Title: A Software-defined Edge Computing Solution

Project Acronym: ONEedge

Call: H2020-SMEInst-2018-2020-2

Grant Agreement: 880412

WP number and Title: WP3. Product Innovation

Nature: R: Report

Dissemination Level: PU: Public

Version: 1.0

Contractual Date of Delivery: 31/7/2020

Actual Date of Delivery: 31/7/2020

Lead Authors: Vlastimil Holer, Rubén S. Montero and Constantino Vázquez

Authors: Sergio Betanzos, Ricardo Díaz, Christian González, Alejandro Huertas, Jorge M.
Lobo, Ángel L. Moya, Jan Orel, Petr Ospaly and Cristina Palacios

Status: Submitted

Document History

Version Issue Date Status
1

Content and changes

1.0 31/7/2020 Submitted First final version of the report

1 A deliverable can be in one of these stages: Draft, Peer-Reviewed, Submitted and Approved.

Version 1.0 31 July 2020 Page 2 of 69

ONEedge - 880412 D3.1. Software Report

Executive Summary

The purpose of deliverable D3.1 is to offer a summary of the design of the technology
components that have been implemented in the First Innovation Cycle (M4-M9), as well as to
provide the full details of each of the software requirements that are being addressed as part
of the development of such components.

For each Software Requirement, this document provides a full description, a list of detailed
requirements and specifications, a description of its architecture and components, the data
model, and relevant changes applied to the API and Interfaces.

During the First Innovation Cycle (M4-M9), the project mostly focused on those software
requirements needed to achieve our first milestone in M9, which is the base functionality
needed for a single-host edge deployment.

The work carried out during this First Innovation Cycle involved software requirements from
components CPNT1, CPNT2, CPNT3, CPNT4 and CPNT5, with a special focus on laying the
technological foundation of ONEedge. These are some of the main new features that have
been implemented as part of this process:

● Development of a new tool to achieve fully automatic EdgeNebula upgrades.

● A new driver to interact with Firecracker VMM.

● Redesign and implementation of a new monitoring system.

● Improvement of the network interface with VMware services.

● Extended functionality for NUMA support.

● OneFlow being re-written to improve scalability and response time.

● Improvement of the Graphical User Interface (Sunstone).

● Improvement of the Amazon EC2 and Packet drivers.

● Several extensions of the Infrastructure Provision and Deployment tools.

● Better support for deploying a Kubernetes cluster.

● New integration with the Docker Hub marketplace.

● New version of the Kubernetes appliance.

Version 1.0 31 July 2020 Page 3 of 69

ONEedge - 880412 D3.1. Software Report

Table of Contents

1. Edge Instance Manager (CPNT1) 5

[SR1.2] Automatic Product Upgrade 5

2. Edge Workload Orchestration and Management (CPNT2) 16

[SR2.1] Integration with Serverless Hypervisor 16

[SR2.3] Secure and Scalable Distributed Monitoring 21

[SR2.5] Integration with Remote VMware vCenter Service 27

[SR2.6] VNF Support 30

[SR2.8] Complete Service Flows 35

[SR2.9] Web UI extensions 44

3. Edge Provider Selection (CPNT3) 45

[SR3.4] Driver Maintenance Process 45

4. Edge Infrastructure Provision and Deployment (CPNT4) 49

[SR4.1] Reliable Edge Resource Provision 49

[SR4.2] Usability, Functionality and Scalability of Provision 53

[SR4.3] Provision Template for Reference Architectures 57

5. Edge Apps Marketplace (CPNT5) 62

[SR5.2] Built-in Management of Application Containers Engine 62

[SR5.3] Integration with Application Containers Marketplace 64

[SR5.4] New Edge Applications Marketplace Entries 69

Version 1.0 31 July 2020 Page 4 of 69

ONEedge - 880412 D3.1. Software Report

1. Edge Instance Manager (CPNT1)

[SR1.2] Automatic Product Upgrade

Description

The OpenNebula (EdgeNebula) upgrades were always relatively simple to manage, as most of
the steps could be automated - product packages or database schema upgrades. The
problematic part of upgrades is updating the configuration files for newer versions.
EdgeNebula comes with more than 70 individual configuration files, through which
administrators can adjust the behaviour of various parts. Every custom change in a
configuration file in the old version has to be reevaluated again on upgrade and manually
applied to the new version of file. Moreover, the migration of custom change does not have to
be straightforward as syntax or semantic of configuration files changes during the time.

To be able to achieve the fully automatic EdgeNebula upgrades, we had to implement a missing
mechanism for automatic upgrades of configuration files to the new versions. This new
mechanism deals with administrators’ custom changes and migrates them to the new version
of configuration files fully automatically. Problematic or conflicting customizations are
reported back to the administrators to resolve them semi-automatically.

New configuration upgrade mechanism is provided via a new dedicated CLI tool onecfg and is
part of EdgeScape.

Requirements and Specifications

Files Types Classification

It is necessary to review all existing configurations we use and their file formats to understand
what and how to automatically upgrade. Following 4 file formats were identified:

● YAML (with OR without strict order in arrays)

● Shell with only variables declaration

● OpenNebula specific INI-like format

● XML

Overview of existing files and their formats provide Table 1.1.

FILE FORMAT TYPE

/etc/one/auth/ldap_auth.conf YAML strict
/etc/one/auth/server_x509_auth.conf YAML
/etc/one/auth/x509_auth.conf YAML
/etc/one/az_driver.conf YAML
/etc/one/az_driver.default XML
/etc/one/cli/*.yaml YAML strict
/etc/one/defaultrc Shell
/etc/one/ec2_driver.conf YAML
/etc/one/ec2_driver.default XML
/etc/one/ec2query_templates/*.erb XML
/etc/one/econe.conf YAML
/etc/one/hm/hmrc Shell
/etc/one/monitord.conf OpenNebula specific
/etc/one/oned.conf OpenNebula specific

Version 1.0 31 July 2020 Page 5 of 69

ONEedge - 880412 D3.1. Software Report

/etc/one/oneflow-server.conf YAML
/etc/one/onegate-server.conf YAML
/etc/one/onehem-server.conf YAML
/etc/one/packet_driver.default XML
/etc/one/sched.conf OpenNebula specific
/etc/one/sunstone-logos.yaml YAML strict
/etc/one/sunstone-server.conf YAML
/etc/one/sunstone-views.yaml YAML
/etc/one/sunstone-views/**/*.yaml YAML
/etc/one/tmrc Shell
/etc/one/vcenter_driver.conf YAML
/etc/one/vcenter_driver.default XML
/etc/one/vmm_exec/vmm_exec_kvm.conf OpenNebula specific
/etc/one/vmm_exec/vmm_exec_vcenter.conf OpenNebula specific
/etc/one/vmm_exec/vmm_execrc Shell
/var/lib/one/remotes/datastore/ceph/ceph.conf Shell
/var/lib/one/remotes/etc/datastore/ceph/ceph.conf Shell
/var/lib/one/remotes/etc/datastore/fs/fs.conf Shell
/var/lib/one/remotes/etc/im/firecracker-probes.d/probe_db.conf YAML
/var/lib/one/remotes/etc/im/kvm-probes.d/pci.conf YAML
/var/lib/one/remotes/etc/im/kvm-probes.d/probe_db.conf YAML
/var/lib/one/remotes/etc/im/lxd-probes.d/pci.conf YAML
/var/lib/one/remotes/etc/im/lxd-probes.d/probe_db.conf YAML
/var/lib/one/remotes/etc/market/http/http.conf Shell
/var/lib/one/remotes/etc/tm/fs_lvm/fs_lvm.conf Shell
/var/lib/one/remotes/etc/vmm/firecracker/firecrackerrc YAML
/var/lib/one/remotes/etc/vmm/kvm/kvmrc Shell
/var/lib/one/remotes/etc/vmm/lxd/lxdrc YAML
/var/lib/one/remotes/etc/vmm/vcenter/vcenterrc YAML
/var/lib/one/remotes/etc/vnm/OpenNebulaNetwork.conf YAML
/var/lib/one/remotes/vmm/kvm/kvmrc Shell
/var/lib/one/remotes/vnm/OpenNebulaNetwork.conf YAML

Table 1.1. List of EdgeNebula configuration files and their file types

Configuration Files Manipulation

To be able to implement automatic configuration files upgrade, we need to be able to
manipulate each configuration file (read, update and write changes) and preserve the structure
(and comments) as much as possible.

While reading the configuration files is not a problem, updating them and storing the changes
back is not that common for the configuration file formats we use.

The abstraction classes to manipulate each file format are implemented within
(OneScape::Config::Type namespace):

● Simple - for plain files (also use for XML)

● Augeas - generic class to manage files via Augeas (https://augeas.net)

● Augeas::ONE - for OpenNebula specific format via Augeas interface

● Augeas::Shell - for Shell format via Augeas Interface

● Yaml - for YAML serialized data structures

● Yaml::Strict - for YAML serialized data with strict ordered arrays

This allows to implement the most suitable approach for each file format to read, update and
write files. Each class provides a set of methods to manipulate the files as shown on Table 1.2.

Version 1.0 31 July 2020 Page 6 of 69

https://augeas.net/

ONEedge - 880412 D3.1. Software Report

METHOD DESCRIPTION

initialize([NAME]) Class constructor with optional file NAME (not loaded by default)

content Accessor method into in-memory data structure representing file content.

load([NAME]) Load from file NAME content into memory

save([NAME]) Save memory content to file

delete Delete file from disk (based on NAME provided on load)

exists?([NAME]) Check if file NAME exists

copy(OBJECT) Copy configuration content from another OBJECT into the current object.

to_s Serialize memory configuration content as string in file format

same?(OBJECT) Compares current configuration with configuration from another OBJECT

similar?(OBJECT) Compares current configuration with configuration from another OBJECT

diff(OBJECT) Provides a list of differences between current and another OBJECT

patch(DIFF, MODE) Apply list of differences from DIFF to current object

hintings(DIFF, [REP]) Format list of different parts for human beings

Table 1.2. Configuration class methods

Each configuration file must use an appropriate class matching its file format. First object
needs to be instantiated and a particular file loaded.

All manipulation with content is over content method accessor, which provides raw data (e.g.,
Array or Hash structure for YAML formats, String for plain files) or Augeas object.

When changes are done, configuration object content is saved into a file.

Example configuration file manipulation from Ruby code is presented on Figure 1.1:

#!/usr/bin/ruby

require 'bundler/setup'
require 'onescape'

create object to manage YAML configuration file
cfg = OneScape::Config::Type::Yaml.new('/etc/one/sunstone-views.yaml')

load / update / save configuration file only if exists
if cfg.exists?
 cfg.load
 cfg.content['default'] << ['user', 'cloud']
 cfg.save
end

Figure 1.1. Example code of configuration file manipulation

Version 1.0 31 July 2020 Page 7 of 69

ONEedge - 880412 D3.1. Software Report

Automatic Change Management

We expect that the majority of changes among different versions of the same file can be
automatically detected and applied.

To achieve this approach, we need to be able to compare 2 versions of the same file format (A
and B), identify differences between A and B files and propose individual steps needed to be
done on file A to get into content equivalent with B. Also we must be able to apply such steps
of differences on A to get into state B.

The approach is similar to what is known in the Unix world with command line tools diff and
patch for managing changes in plain files. For all OpenNebula configuration file types we
implement such functionality for:

● diff (method diff) to provide differences between 2 configuration objects

● patch (method patch) to apply differences on A to get into state equivalent to B

As an extra safety validation feature and to be able to replace files with new ones in cases
there only minor user change (e.g., in comment), we also implement comparison functions to
detect which files are:

● same (method same?) - same on block level

● similar (method similar?) - have same semantic, but are NOT same on block level

Example use of identification of differences between 2 configuration files and application of
the differences to the file is presented on Figure 1.2.

#!/usr/bin/ruby

require 'bundler/setup'
require 'onescape'

object to manage YAML configuration
cfg1 = OneScape::Config::Type::Augeas::ONE.new('/etc/one/oned.conf')
cfg2 = OneScape::Config::Type::Augeas::ONE.new('/etc/one/oned.conf-new')

load files
cfg1.load
cfg2.load

identify differences between cfg1 and cfg2
diff = cfg1.diff(cfg2)

dump diff structure to terminal
STDERR.puts diff

apply changes from cfg2 to cfg1 and save
cfg1.patch(diff)
cfg1.save

Figure 1.2. Example code of configuration file manipulation

Complete Configurations Upgrade

Upgrade of configuration files on the users’ deployments must be done for all files
transactionally (it is not possible to upgrade only a part of the configuration files). Classes
which manipulate with individual configuration files needs to be incorporated into a framework
which would allow to:

Version 1.0 31 July 2020 Page 8 of 69

ONEedge - 880412 D3.1. Software Report

● bulk generate, persist and apply upgrade differences between all available conf files

● include custom upgrade code for operations which cannot be identified automatically

● upgrade in a safe sandbox and copy final state to production locations only on success

● track version of configuration

Command and Control Tool

The CLI tool onecfg is required for administrators to be able to check the configuration state,
see available upgrades, run the bulk configuration upgrade and deal with potential conflicts
introduced by heavy configuration customizations. Such a tool hides all complexities of
manipulation with configuration files, bulk patching of files following the differences or
sandboxing the operations behind a simple to use interface.

Integration with Packager

EdgeNebula is going to be distributed as traditional operating system packages (rpm, deb).
Both packagers provide their own ways and defaults how to deploy newer configuration files
for changed ones during package upgrade. The new configuration file can be automatically
deployed (and old version backed up) OR old configuration file can be left untouched (and new
version is deployed under different name), while the non-customized configuration files are
replaced with their newer versions automatically. The packager is a disruptive component here
in terms of configuration files during the upgrade process.

It is necessary to use our own mechanism in the EdgeNebula packages to backup the state of
the source configuration files before any package upgrade with files happens. And force our
automatic configuration upgrade which preserves the customizations to use the backed up
clean and trustworthy source state.

Architecture and Components

The upgrade mechanism is implemented by following linked components integrated into a
stand-alone simple to use command line tool onecfg:

● Configuration Manipulation Classes: interact with single configuration file (type)

● Migrator of Configurations: manages the upgrade of all configurations at once

● Version Tracker: tracks version of current configuration files

It provides insight into the configuration state on the EdgeNebula front-end deployment and
also orchestrates all steps of the configuration files automatic upgrade process, which is the
crucial part of the tool functionality. Tool completely avoids doing manual configuration
upgrades for a non-heavily customized environment. It is expected to be integrated into a more
complex upgrade automation process, which deals with upgrading of all parts (e.g., packages,
database).

Figure 1.3 shows the interactions among the components during the successful upgrade of
configuration.

Version 1.0 31 July 2020 Page 9 of 69

ONEedge - 880412 D3.1. Software Report

Figure 1.3. Sequence diagram of upgrade

Data Model

File Change Descriptor

Differences between configuration files (objects) as returned by diff() method of each
configuration class are represented as a list of elemental operations necessary to follow when
change is going to be applied on similar configuration. Table 1.3 describes metadata included in
a single elemental operation.

KEY DESCRIPTION

path Path (location) in configuration file to make change as array

state Action to take with change, possible values
● set - set existing parameter with different new value
● ins - insert new configuration parameter
● rm - remove configuration parameter

key Configuration parameter name

value Configuration parameter value (for set/ins)

old Previous configuration parameter value (for set/rm) to detect user changes

extra Hash with additional operation metadata
● Multiple - True/False if parameter has multiple occurrences
● Index - Index with location of the change in array

Table 1.3. Elemental change operation data

Version 1.0 31 July 2020 Page 10 of 69

ONEedge - 880412 D3.1. Software Report

Example of simple change in configuration file oned.conf, which adds new TIMEOUT parameter
into section DB is described by file comparison command diff on Figure 1.4.

diff oned.conf oned.conf-new
76c76,77
< DB = [BACKEND = "sqlite"]

> DB = [BACKEND = "sqlite",
> TIMEOUT = 2500]

Figure 1.4. Difference between plain files (command diff)

Same change is described by the comparison mechanism of the configuration classes by a
structure presented in Figure 1.5. It contains a single elemental operation with metadata
following structure from the Table 1.3.

[{"path"=>["DB"], "key"=>"TIMEOUT", "value"=>"2500", "state"=>"ins",
"extra"=>{"multiple"=>false}}]

Figure 1.5. Change in file as described by configuration class

A method hintings() of each configuration class transforms the machine difference structure
above into human readable text. Same change from Figures 1.4 and 1.5 is processed by hintings
method on Figure 1.6.

ins DB/TIMEOUT = "2500"

Figure 1.6. Human readable change in configuration file

Complete Upgrade Descriptor

Single upgrade descriptor of all changes for all configuration files from one version to another
is a YAML document. It includes a list of all files - their names, filesystem metadata, raw content
and file change descriptor (as returned by diff() method of each configuration type class). The
descriptor tracks not only configuration files which have changed between product versions,
but only existing unchanged files and files which are newly created or deleted in target version.

Metadata of each single managed configuration file are listed in Table 1.4.

KEY DESCRIPTION

action Type of change operation in new file version:
● [undefined] - no change happens
● create - introduced new file to be created
● delete - file is deleted in new version
● apply - upgrade file by applying change

class Partial name of configuration type class which manages file, e.g.:
● Simple
● Augeas::ONE
● Augeas::Shell

Version 1.0 31 July 2020 Page 11 of 69

ONEedge - 880412 D3.1. Software Report

● Yaml
● Yaml::Strict

owner File user owner on filesystem (e.g., oneadmin)

group File group owner on filesystem (e.g., oneadmin)

mode File permissions on UNIX filesystem as a string (e.g., 0640)

content String with raw content of the new file version (or old version on delete)

change Change descriptor as returned by diff() (only if change happens)

Table 1.4. Version change metadata of single managed file

Upgrade descriptor is a Hash structure with only single ‘patches‘ key element (for historic
reason and will be subject to change in the next development iteration). Under the ‘patches‘
there is a Hash structure with metadata of all managed files. Absolute filenames are in the
structure keys and version change metadata of single managed file (Table 1.4) are in the values.
An example of a complete upgrade descriptor is available in Figure 1.7.

patches:
 /etc/one/cli/oneprovision.yaml:
 class: Yaml::Strict
 owner: root
 group: root
 mode: '0644'
 action: apply
 change:
 - path:
 - :NAME
 key: :size
 value: 15
 old: 25
 state: set
 extra: {}
 - path:
 - :NAME
 key: :expand
 value: true
 state: ins
 extra: {}
 content: |

 :ID:
 :desc: Provision identifier
 :size: 36
 :NAME:
 :desc: Name of the Provision
 :size: 15
 :left: true
 :expand: true
...
 /etc/one/cli/onegroup.yaml:
...
 /etc/one/cli/onehost.yaml:
...

Figure 1.7. Example of generated upgrade descriptor

Version 1.0 31 July 2020 Page 12 of 69

ONEedge - 880412 D3.1. Software Report

Although not strictly a data representation, the complete upgrade descriptor specified as set
of default contents and automatic changes in the configuration files (Figure 1.7) might not
cover all cases. Programmatic migrator for the configuration parts which are not possible to
handle automatically is also necessary. Such a programmatic upgrade descriptor is a Ruby code,
which is dealing with data changes in the configuration files content.

Example of programmatic upgrade descriptor as a code is shown on Figure 1.8. It contains a
pre-upgrade section (def pre_up), which prepares the state of configuration directories for the
upgrade (i.e., create new directories, fix owners or permissions). Upgrade part gets each
configuration file as an instance of old and new customized versions of the configuration file.

The code inside should update the data content of each file as required (figured example sets
parameter MONITORING_INTERVAL_HOST to value 60 in configuration file
/etc/one/oned.conf).

module Migrator

 # Preupgrade steps
 def pre_up
 @fops.mkdir('/var/lib/one/remotes/etc')
 @fops.chown('/var/lib/one/remotes/etc', 'oneadmin', 'oneadmin')
 @fops.chmod('/var/lib/one/remotes/etc', 0o750)
 end

 # Upgrade steps
 def up
 process('/etc/one/oned.conf', 'Augeas::ONE') do |old, new|
 new.set('MONITORING_INTERVAL_HOST[1]', 60)
 end
 end

end

Figure 1.8. Example of programmatic upgrade descriptor

API and Interfaces

API

No API changes are required.

CLI

All configuration files management done by administrators (or any dependent automation
mechanism) is strictly over the newly introduced CLI tool onecfg. Tool provides the set of
subcommands, which are briefly listed in Table 1.5. For each subcommand a complete list of
parameters can be displayed when --help is passed.

SUBCOMMAND DESCRIPTION

onecfg generate This subcommand is intended for OpenNebula developers to generate a
complete upgrade descriptor for changes which can be identified and
applied fully automatically.

Version 1.0 31 July 2020 Page 13 of 69

ONEedge - 880412 D3.1. Software Report

onecfg init Initialize version tracking state for the configuration files. If tooling loses
track of the current version (due to several product upgrades without
triggering configuration upgrade), the version tracking state can be
reinitialized based.

onecfg status Status shows the current configuration version:

onecfg status
--- Versions ------------------------------
OpenNebula: 5.10.1
Config: 5.10.0

--- Available Configuration Updates -------
No updates available.

Lists available configuration version upgrades.

onecfg status
--- Versions -----------------
OpenNebula: 5.10.1
Config: 5.6.0

--- Backup to Process ---------------------
Snapshot: /var/lib/one/backups/config/backup
(will be used as one-shot source for next update)

--- Available updates --------
New config: 5.10.0
- from 5.6.0 to 5.8.0 (YAML,Ruby)
- from 5.8.0 to 5.10.0 (YAML,Ruby)

onecfg upgrade Upgrades the configuration files:

onecfg upgrade --verbose
INFO : Checking updates from 5.8.0 to 5.10.0
ANY : Backup stored in
'/tmp/onescape/backups/2019-12-12_15:14:39_18278'
INFO : Updating from 5.8.0 to 5.10.0
INFO : Incremental update from 5.8.0 to 5.10.0
INFO : Update file '/etc/one/vcenter_driver.default'
INFO : Skip file '/etc/one/cli/oneprovision.yaml' - missing
INFO : Update file '/etc/one/cli/onegroup.yaml'
INFO : Update file '/etc/one/cli/onehost.yaml'
INFO : Update file '/etc/one/cli/oneimage.yaml'
…
ANY : Configuration updated to 5.10.0

No changes on the filesystem will be done if no upgrade is available nor if
the process fails to upgrade a particular file with even a single error.

To deal with error situations during upgrade (introduced by incompatible
customizations by cloud administrators), the tool provides a set of patch
modes which infrastructs the upgrade process how to deal with error
situations (globally, for specific file, for specific file and version). Following
patch modes are available:

● skip - skip failing operation
● force - apply upgrade on most suitable place in file
● replace - replace conflicting customization with distr. one

Patch modes are specified during onecfg upgrade run following way, e.g.:

Version 1.0 31 July 2020 Page 14 of 69

ONEedge - 880412 D3.1. Software Report

onecfg upgrade \
 --patch-modes skip:/etc/one/oned.conf \
 --patch-modes skip,replace:/etc/one/oned.conf:5.10.0 \
 --patch-modes force:/etc/one/sunstone-logos.yaml:5.6.0 \
 --patch-modes replace:/etc/one/sunstone-server.conf \
 --patch-modes skip:/etc/one/sunstone-views/admin.yaml:5.4.1 \
 --patch-modes skip:/etc/one/sunstone-views/admin.yaml:5.4.2 \
 --patch-modes skip:/etc/one/sunstone-views/kvm/admin.yaml

onecfg validate Reads and validates syntax of all managed configuration files.

onecfg validate --verbose
INFO : File '/etc/one/vcenter_driver.default' - OK
INFO : File '/etc/one/ec2_driver.default' - OK
INFO : File '/etc/one/az_driver.default' - OK
INFO : File '/etc/one/auth/ldap_auth.conf' - OK
INFO : File '/etc/one/auth/server_x509_auth.conf' - OK
...

onecfg diff Reads all managed configuration files and identifies all user customizations.
List of customization is provided as a human readable change descriptor
(see Figure 1.6) with user inserted, removed and set parameters.

onecfg diff
/etc/one/cli/oneimage.yaml
- ins ID/adjust = true
- set USER/size = 8
- set GROUP/size = 8
- ins NAME/expand = true

/etc/one/oned.conf
- set DEFAULT_DEVICE_PREFIX = "\"sd\""
- set VM_MAD[NAME = '"vcenter"']/ARGUMENTS = "\"-p -t 15 -r 0 -s
sh vcenter\""
- rm VM_MAD[NAME = '"vcenter"']/DEFAULT =
"\"vmm_exec/vmm_exec_vcenter.conf\""
- ins HM_MAD/ARGUMENTS = "\"-p 2101 -l 2102 -b 127.0.0.1\""
- ins VM_RESTRICTED_ATTR = "\"NIC/FILTER\""

Table 1.5. Subcommands of onecfg tool

Version 1.0 31 July 2020 Page 15 of 69

ONEedge - 880412 D3.1. Software Report

2. Edge Workload Orchestration and Management (CPNT2)

[SR2.1] Integration with Serverless Hypervisor

Description

A new driver to interact with Firecracker VMM has been implemented. This allows ONEedge to
support light VMs called microVMs.

MicroVMs are fully integrated and support every basic operation (create, terminate, power-off,
etc.). MicroVMs are also integrated with the storage stack (file based datastores) and network
stack (linux bridge based drivers). Additional ONEedge features VNC support and
contextualization support for Firecracker microVMs.

Requirements and Specifications

Seamless integration

MicroVMs are treated like normal VMs resources. Apart from hypervisor limitations, the
integration allows to:

● Perform existing actions (e.g create, terminate, power-off, …)

● Use existing storage drivers.

● Use existing networking drivers.

● Use existing contextualization methods.

As a result of this seamless integration, microVMs are fully supported for every OpenNebula
service that uses VMs resources, like OneFlow. Also most of the storage and networking drivers
are available without major changes.

Lightweight

The Integration with the serverless application provide lightweight VMs (microVMs) which
facilitates the management of serverles workloads by:

● Increasing the VMs per host density.

● Reducing deployment time.

● Allowing to easily deploy application oriented images.

Isolation

As the microVMs will run in a multitenant environment, isolation between different microVMs
must be achieved to ensure users security. The microVM process is isolated by using a
hypervisor provided tool called Jailer.

Monitoring

A monitoring driver has been implemented for monitoring both MicroVMs and hypervisor
nodes.

Version 1.0 31 July 2020 Page 16 of 69

ONEedge - 880412 D3.1. Software Report

Web Interface

The Sunstone web interface has been modified in order to adapt itself to microVMs. When a
microVM template is being defined or updated the interface will take care of showing only
available actions and restrict or change the available options for some fields.

Architecture and Components

No new components were needed to implement the new hypervisor integration. The high level
architecture of the new driver is defined in Figure 2.1 below.

Figure 2.1. Overview of OpenNebula Host and Firecracker (jailer) components

The Jailer takes care of adding an extra layer of security by isolating the process using linux
existing tools like chroot and cgroups.

The VMM (Firecracker) takes care of managing the microVM and provides a REST API to
perform different actions over the microVM (e.g gratefully power-off, rescan disks, …).

Data Model

MicroVMs information is stored in the OpenNebula databases as an XML document with the
same structure used for VMs. The XSD defining the schema can be found in the repository:
https://github.com/OpenNebula/one/blob/master/share/doc/xsd/vm.xsd

<VM>
 <ID>16</ID>
 <UID>0</UID>
 <GID>0</GID>
 <UNAME>oneadmin</UNAME>
 <GNAME>oneadmin</GNAME>
 <NAME>alpine-16</NAME>
 ...
 <DEPLOY_ID>one-16</DEPLOY_ID>
 ...
 <TEMPLATE>
 ...
 <CPU><![CDATA[0.1]]></CPU>

Version 1.0 31 July 2020 Page 17 of 69

https://github.com/OpenNebula/one/blob/master/share/doc/xsd/vm.xsd

ONEedge - 880412 D3.1. Software Report

 <DISK>
 ...
 <DISK_ID><![CDATA[0]]></DISK_ID>
 ...
 <IMAGE_ID><![CDATA[0]]></IMAGE_ID>
 ...
 <READONLY><![CDATA[NO]]></READONLY>
 ...
 </DISK>
 ...
 <MEMORY><![CDATA[128]]></MEMORY>
 <NIC>
 ...
 <MAC><![CDATA[02:00:c0:a8:96:64]]></MAC>
 ...
 <NIC_ID><![CDATA[0]]></NIC_ID>
 ...
 <TARGET><![CDATA[one-16-0]]></TARGET>
 ...
 </NIC>
 ...
 <OS>
 <KERNEL><![CDATA[/var/lib/one//datastores/0/16/kernel]]></KERNEL>
 <KERNEL_CMD><![CDATA[console=ttyS0 reboot=k panic=1 pci=off i8042.noaux i8042.nomux
i8042.nopnp i8042.dumbkbd]]></KERNEL_CMD>
 <KERNEL_DS><![CDATA[$FILE[IMAGE="kernel"]]]></KERNEL_DS>
 <KERNEL_DS_CLUSTER_ID><![CDATA[0]]></KERNEL_DS_CLUSTER_ID>
 <KERNEL_DS_DSID><![CDATA[2]]></KERNEL_DS_DSID>
 <KERNEL_DS_ID><![CDATA[1]]></KERNEL_DS_ID>

<KERNEL_DS_SOURCE><![CDATA[/var/lib/one//datastores/2/3255664bc145314981e863454b65319e]]></KE
RNEL_DS_SOURCE>
 <KERNEL_DS_TM><![CDATA[ssh]]></KERNEL_DS_TM>
 </OS>
 ...
 <TEMPLATE_ID><![CDATA[0]]></TEMPLATE_ID>
 <TM_MAD_SYSTEM><![CDATA[ssh]]></TM_MAD_SYSTEM>
 <VMID><![CDATA[16]]></VMID>
 </TEMPLATE>
 ...
</VM>

Figure 2.2. VM XML representation (some attributes have been omitted)

In order to deploy a microVM the XML document representing it must be converted to a
deployment file or configuration file representing the microVM in a way the hypervisor can
understand. Firecracker microVMs configuration file is a JSON document covering all the VM
specifications.

The supported resources and their configuration attributes are defined in the API definition
file which is publicly available at Firecracker GitHub repository:
https://github.com/firecracker-microvm/firecracker/blob/master/src/api_server/swagger/firecr
acker.yaml

{
 "boot-source": {
 "kernel_image_path": "kernel",
 "boot_args": "console=ttyS0 reboot=k panic=1 pci=off i8042.noaux i8042.nomux i8042.nopnp
i8042.dumbkbd"
 },

Version 1.0 31 July 2020 Page 18 of 69

https://github.com/firecracker-microvm/firecracker/blob/master/src/api_server/swagger/firecracker.yaml
https://github.com/firecracker-microvm/firecracker/blob/master/src/api_server/swagger/firecracker.yaml

ONEedge - 880412 D3.1. Software Report

 "drives": [
 {
 "drive_id": "disk.0",
 "path_on_host": "disk.0",
 "is_root_device": true,
 "is_read_only": false
 },
 {
 "drive_id": "disk.1",
 "path_on_host": "disk.1",
 "is_root_device": false,
 "is_read_only": true
 }
],
 "machine-config": {
 "mem_size_mib": 128,
 "vcpu_count": 1,
 "ht_enabled": false
 },
 "network-interfaces": [
 {
 "iface_id": "eth0",
 "host_dev_name": "one-16-0",
 "guest_mac": "02:00:c0:a8:96:64",
 "allow_mmds_requests": true
 }
],
 "logger": {
 "log_fifo": "logs.fifo",
 "metrics_fifo": "metrics.fifo"
 }
}

Figure 2.3. Firecracker microVMs configuration file in JSON format

The virtualization driver takes care of the translation from the OpenNebula XML VM
representation to the Firecracker JSON microVM representation when the deploy action is
performed.

A high level image of the translation between the VM XML document to the deployment file
can be achieved by comparing Figure 2.2 and Figure 2.3. Many of the VM attributes, like
permission, context or other information related to how OpenNebula manage the resources
have been omitted from Figure 2.2 as they are not relevant to the VMM. The VMM only
requires the basic information to boot the microVM leaving the resource management tasks to
OpenNebula drivers.

API and Interfaces

VMM Interaction

In order to integrate the hypervisor with OpenNebula 3 different APIs or interfaces are used at
different levels:

1. VMM Level interface: this interface allows OpenNebula drivers to interact with
Firecracker and the Jailer. The Jailer is interacted by using a command line interface
while the VMM process is interacted via REST API. VMM Level interface is used by the
virtualization and monitoring drivers.

Version 1.0 31 July 2020 Page 19 of 69

ONEedge - 880412 D3.1. Software Report

2. Driver interface: this interface wraps the VMM Level interface. Each possible action is
defined by a driver which is used by OpenNebula (oned) to carry out the different
supported actions.

3. XML-RPC interface: this interface is exposed by OpenNebula and it allows users to
interact with VM resources, among others. This is the interface used by the final user to
interact with OpenNebula either directly or using higher level interfaces like CLI or
Sunstone.

These different layers of abstraction allow us to easily add new hypervisors as only the VMM
Level interface is hypervisor dependent.

Configuration

A new configuration file, firecrackerrc, have been created to set up configuration attributes for
tuning how Firecracker VMM interacts with the system and OpenNebula. The following can be
configured:

● VNC options: the width, height and timeout can be configured for VNC connection.

● Datastore location: if datastores are not mounted in the default path it must be set to
let the driver know where to find the datastores.

● Jailer uid and gid: these attributes are used by the Jailer to isolate the process using
performing a chroot action.

● Firecracker binary location.

● Shutdown timeout: the time to wait for a VM to gracefully shutdown before killing the
process.

● Cgroups configuration: the cgroup mount point, the delete timeout and the use of
cpu.shares for limiting the cpu access can be configured in this section.

● NUMA placement strategy: it defines how the microVMs are going to be distributed
over the available NUMA nodes.

Version 1.0 31 July 2020 Page 20 of 69

ONEedge - 880412 D3.1. Software Report

[SR2.3] Secure and Scalable Distributed Monitoring

Description

The monitoring system was redesigned to enable better scalability and to reduce the CLI
response times under heavy load.

The monitoring system was separated from the oned to Monitor Daemon. The Monitor
Daemon controls the monitoring workflow: starts monitoring agents, processes network
messages from agents and writes monitoring info to the database.

Requirements and Specifications

● Allow better scalability of the monitoring system

● Reduce CLI response times under heavy load

● Use a separate component to process monitoring information

● Encrypt communication

Architecture and Components

Main components of the monitoring system are:

● Monitor Daemon: The Monitor Daemon dirigates the whole Monitoring System. It’s
connected to the oned with the Mem Pipe. Starts or stops Monitor Agents through
Monitor Driver according to Host state and receives monitoring information from the
Monitor Agents and writes the monitoring information to OpenNebula database.

● Monitor Driver: Communication class between the Monitor Daemon and Monitor
Agents

● Monitor Agent: Runs on host, periodically starts monitoring probes, receives the
information from probes and sends it by UDP or TCP network to Monitor Daemon.

● Monitor Probe: Gathers information from the host.

Figure 2.4. Monitor Daemon architecture

Version 1.0 31 July 2020 Page 21 of 69

ONEedge - 880412 D3.1. Software Report

Message Format

There is a message system for communication between Monitor Daemon, oned and Monitor
Agents. The messages have following format:

MESSAGE TYPE OBJECT ID STATUS TIMESTAMP PAYLOAD

Figure 2.5. Monitor message format

● MESSAGE TYPE - String, as described in the tables below

● OBJECT ID - Integer, ID of the host the message refers to

● STATUS - String describing the status of the operation or host “SUCCESS”, “FAILURE”,
“-”, “ERROR”, “ONLINE”, ...

● TIMESTAMP - Unix epoch time

● PAYLOAD - Base64 encoded and zipped string with message data. The payload could
be encrypted

Interface between oned and Monitor Daemon

Used to send information from/to the monitor daemon to/from oned. Messages will include
state changes and the information gathered by the system probes.

TYPE ID STATUS PAYLOAD

SYSTEM_HOST Host ID success/fail General information about the host, which
does not change too often (e.g. total memory,
disk capacity, datastores, pci devices, NUMA
nodes, …)

HOST_STATE Host ID Additional information associated to the state
change

VM_STATE Host ID State of VMs running on the host

Table 2.1. Messages from Monitor Daemon to oned

TYPE ID PAYLOAD

UPDATE_HOST Host ID XML Host information

HOST_LIST - XML HostPool information

DEL_HOST Host id

RAFT_STATUS - Leader state in HA environment

Table 2.2. Messages from oned to Monitor Daemon

Version 1.0 31 July 2020 Page 22 of 69

ONEedge - 880412 D3.1. Software Report

Interface between Monitor Daemon and Monitor Driver

TYPE ID PAYLOAD

START_MONITOR Host ID template with host information + monitord configuration

STOP_MONITOR Host ID template with host information

Table 2.3. Messages from Monitor Daemon to Monitor Agent

TYPE ID STATUS PAYLOAD

BEACON_HOST Host ID success/fail No extra payload. Notification message, indicating
that the agent is still alive

MONITOR_VM Host ID success/fail VMs monitoring information: used memory, used
CPUs, disk io, …

MONITOR_HOST Host ID success/fail Monitoring information: used memory, used cpu,
network traffic, …

SYSTEM_HOST Host ID success/fail General information about the host, which does not
change too often (e.g. total memory, disk capacity,
datastores, pci devices, NUMA nodes, …)

STATE_VM Host ID success/fail VMs state: running, power-off, …

LOG E, I, W, D Error/info message from agent, should be displayed
in monitor log

Table 2.4. Messages from monitor agent to monitor daemon

Probes

Probes are executed by Monitor Agent to collect specific metrics from the host. Probes are
structured in different directories that determine the frequency in which they are executed, as
well as the data sent back to the frontend. Each hypervisor has its own set of probes located at
remotes/im/<hypervisor>-probes.d>. Table 2.5 shows the purpose of each probe directory.

Directory Purpose Update frequency

host/beacon Heartbeat & watchdog to collect rouge probe processes BEACON_HOST (30s)

host/monitor Monitor information (variable) (e.g. memory usage) stored
in HOST/MONITORING

MONITOR_HOST
(120s)

host/system General quasi-static information about the host (e.g. NUMA
nodes) stored in HOST/TEMPLATE and HOST/SHARE

SYSTEM_HOST (600s)

vm/monitor Monitor information (variable) (e.g. used cpu, network
usage) stored in VM/MONITORING

MONITOR_VM (30s)

vm/status State change notification, only send when a change is
detected

STATE_VM (30s)

Table 2.5. Monitor Probes

Version 1.0 31 July 2020 Page 23 of 69

ONEedge - 880412 D3.1. Software Report

Configuration

The configuration of the Monitor Daemon is located at /etc/one/monitord.conf. Table 2.6
describes basic configuration attributes.

Parameter Attribute Description

MANAGER_TIMER Timer in seconds, monitord evaluates host timeouts

MONITORING_INTER
VAL_HOST

 Wait this time (seconds) without receiving any beacon
before restarting the probes

HOST_MONITORING_
EXPIRATION_TIME

 Seconds to expire host monitoring information, 0 to
disable monitoring recording.

NETWORK ADDRESS Network address to bind the UDP/TCP listener to

MONITOR_ADDRESS Agents will send updates to this monitor address. If
“auto” is used, agents will detect the address from the
ssh connection frontend -> host ($SSH_CLIENT), “auto”
is not usable for HA setup

PORT Listening port

THREADS Number of threads used to receive messages from
monitor probes

PUBKEY Absolute path to public key. Empty for no encryption.

PRIKEY Absolute path to private key. Empty for no encryption.

PROBES_PERIOD BEACON_HOST Time in seconds to send heartbeat for the host

SYSTEM_HOST Time in seconds to send host static/configuration
information

MONITOR_HOST Time in seconds to send host variable information

STATE_VM Time in seconds to send VM status (ie. running, error,
stopped…)

MONITOR_VM Time in seconds to send VM resource usage metrics.

SYNC_STATE_VM Send a complete VM report every SYNC_STATE_VM
seconds

Table 2.6. Monitor Daemon configuration attributes

Data Model

All monitor data is stored in the OpenNebula database in xml format. Extract of the monitoring
data from xsd schema:

<xs:element name="MONITORING">

<xs:complexType>

<xs:all>

 <!-- Percentage of 1 CPU consumed (two fully consumed cpu is 2.0) -->

Version 1.0 31 July 2020 Page 24 of 69

ONEedge - 880412 D3.1. Software Report

 <xs:element name="CPU" type="xs:decimal" minOccurs="0" maxOccurs="1"/>

 <!-- Amount of bytes read from disk-->

 <xs:element name="DISKRDBYTES" type="xs:integer" minOccurs="0" maxOccurs="1"/>

 <!-- Number of IO read operations -->

 <xs:element name="DISKRDIOPS" type="xs:integer" minOccurs="0" maxOccurs="1"/>

 <!-- Amount of bytes written to disk -->

 <xs:element name="DISKWRBYTES" type="xs:integer" minOccurs="0" maxOccurs="1"/>

 <!-- Number of IO write operations -->

 <xs:element name="DISKWRIOPS" type="xs:integer" minOccurs="0" maxOccurs="1"/>

 <!-- ID of the VM -->

 <xs:element name="ID" type="xs:integer" minOccurs="0" maxOccurs="1"/>

 <!-- Consumption in kilobytes -->

 <xs:element name="MEMORY" type="xs:integer" minOccurs="0" maxOccurs="1"/>

 <!-- Sent bytes to the network -->

 <xs:element name="NETTX" type="xs:integer" minOccurs="0" maxOccurs="1"/>

 <!-- Received bytes from the network -->

 <xs:element name="NETRX" type="xs:integer" minOccurs="0" maxOccurs="1"/>

 <!-- Exact time when monitoring info were retrieved -->

 <xs:element name="TIMESTAMP" type="xs:integer" minOccurs="0" maxOccurs="1"/>

</xs:all>

</xs:complexType>

</xs:element>

Figure 2.6. VM monitor information xsd schema

<xs:element name="MONITORING">

<xs:complexType>

<xs:sequence>

 <xs:element name="TIMESTAMP" type="xs:integer" minOccurs="0"/>

 <xs:element name="ID" type="xs:integer" minOccurs="0"/>

 <xs:element name="CAPACITY" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="FREE_CPU" type="xs:integer"/>

 <!-- ^^ Percentage, Free CPU as returned by the probes -->

 <xs:element name="FREE_MEMORY" type="xs:integer"/>

 <!-- ^^ KB, Free MEMORY returned by the probes -->

 <xs:element name="USED_CPU" type="xs:integer"/>

 <!-- ^^ Percentage of CPU used by all host processes (including VMs) over a

total of # cores * 100 -->

 <xs:element name="USED_MEMORY" type="xs:integer"/>

 <!-- ^^ KB, Memory used by all host processes (including VMs) over a total of

MAX_MEM -->

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="SYSTEM" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="NETRX" type="xs:integer" minOccurs="0"/>

 <xs:element name="NETTX" type="xs:integer" minOccurs="0"/>

 </xs:sequence>

Version 1.0 31 July 2020 Page 25 of 69

ONEedge - 880412 D3.1. Software Report

 </xs:complexType>

 </xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Figure 2.7. Host monitor information xsd schema

API and Interfaces

The API and CLI remain unchanged.

Version 1.0 31 July 2020 Page 26 of 69

ONEedge - 880412 D3.1. Software Report

[SR2.5] Integration with Remote VMware vCenter Service

Description

The capabilities of ONEedge to interface with VMware services has been improved to extend
its networking capabilities. The new drivers can define virtual networks and security groups
leveraging the VMware native capabilities (NSX-t & NSX-v).

NSX is the Network and Security software from VMware that enables a virtual cloud network to
connect and protect applications across data centers, multi-clouds, bare metal, and container
infrastructures. VMware NSX Data Center delivers a complete L2-L7 networking and security
virtualization platform—providing agility, automation, and dramatic cost savings that come
with a software-only solution.

With this integration OpenNebula is able to manage NSX-V and NSX-T logical switches and
Distributed Firewalls to enforce security groups.

Requirements and Specifications

The requirements of the NSX manager to be able to interact with OpenNebula are stated in the
following points:

● NSX Manager. The NSX appliance must be deployed with only one IP Address.
OpenNebula installation must be able to connect to NSX Manager with the needed
credentials.

● Controller nodes. At least one controller node must be deployed.

● ESXi Hosts. All ESXi of the cluster must be prepared for NSX.

● Transport Zone. At least one transport zone must be created.

Adding a NSXmanager into OpenNebula This is a semi-automatic process. When vCenter is
connected to a NSX Manager, OpenNebula will detect it in the next monitoring cycle. As a
result, a new tab called “NSX” will show in the UI allowing the configuration of the credentials
(User and Password) needed to connect to NSX Manager. The same process is applied when
importing a new vCenter cluster that is prepared to work with NSX-V or NSX-T.

Also, whenever a vCenter cluster is imported in OpenNebula two hooks are created to aid in
the creation and destruction of virtual networks. These two hooks have been adapted to also
support NSX.

After a vCenter cluster is imported and monitor cycle finalises, the NSX Manager registered for
that cluster is detected.

Architecture and Components

OpenNebula manages logical switches using NSX Driver and the hook subsystem. An action to
create or delete a logical switch either from Sunstone, CLI or API, generates a specific event. If
there is a hook subscribed to that event, it will execute an action or script.

In the NSX integration a hook will use the NSX Driver to send commands to the NSX Manager
API and will wait for an answer. When NSX Manager finishes the action it will return a response
and the hook, based on that response, will end up as success or error.

Version 1.0 31 July 2020 Page 27 of 69

ONEedge - 880412 D3.1. Software Report

Figure 2.8. The process of creating a logical switch

OpenNebula security groups define rules, associated to a Virtual Network, that are applied into
NSX Distributed Firewall over a specific VM logical port group. NSXDriver is in charge of
translating OpenNebula security group rules into DFW rules, on both NSX-T and NSX-V.

Data Model

All NSX objects have a reference within the NSX Manager. Some NSX objects also have
references into vCenter Server. This is the case of logical switches, that have an object
representation in vCenter.

The following table describes the components and their reference formats in NSX and vCenter,
and also the attributes used in OpenNebula to store that object:

Object Type OpenNebula
Attr

NSX Managed Object Reference vCenter Managed
Object Reference

Logical Switch NSX-T NSX_ID xxxxxxxx-yyyy-zzzz-aaaa-bbbbbb network-oXXX

VirtualWire NSX-V NSX_ID virtualwire-XXX dvportgroup-XXX

Transport Zone NSX-T TZ_ID xxxxxxxx-yyyy-zzzz-aaaa-bbbbbb N/A

Transport Zone

NSX-V TZ_ID vdnscope-XX N/A

Table 2.7. Mapping OpenNebula, NSX and vCenter resources

Here are the actions that affect the creation, modification or deletion of rules in the
Distributed Firewall:

OpenNebula action Net driver actions NSX driver action

Instantiate PRE & POST Create rules

Terminate CLEAN Delete rules

PowerOn PRE & POST Create rules

PowerOff CLEAN Delete rules

Table 2.8. Actions over Distributed Firewall

Version 1.0 31 July 2020 Page 28 of 69

ONEedge - 880412 D3.1. Software Report

The NSX driver library is a complex component, as depicted in the following figure.

Figure 2.9. Class Diagram in the NSX driver

API and Interfaces

The NSX integration reuses the Virtual Network and Security Groups already present in the
OpenNebula Sunstone WebUI. However, the interface in Sunstone for NSX manager
configuration has been developed for this functionality, and placed within the OpenNebula
Host information panel.

Figure 2.10. NSX details in Sunstone

Version 1.0 31 July 2020 Page 29 of 69

ONEedge - 880412 D3.1. Software Report

[SR2.6] VNF Support

Description

Fine grain NUMA placement is needed to optimize the performance of some VM workloads,
especially VNFs. We have extended the functionality of OpenNebula to control how VM
resources are mapped onto the hypervisor ones. The implementation assumes the following
model and server characteristics:

● NUMA. Multi-processor servers are usually arranged in nodes or cells. Each NUMA node
holds a fraction of the overall system memory. In this configuration, a processor
accesses memory and I/O ports local to its node faster than to the non-local ones.

● Cores, Threads and Sockets. A computer processor is connected to the motherboard
through a socket. A processor can pack one or more cores, each one implements a
separated processing unit that shares some cache levels, memory and I/O ports. CPU
Cores performance can be improved by the use of hardware multi-threading (SMT) that
permits multiple execution flows to run simultaneously on a single core.

● Hugepages. Systems with big physical memory use also a big number of virtual memory
pages. This big number makes the use of virtual-to-physical translation caches
inefficient. Hugepages reduces the number of virtual pages in the system and
optimizes the virtual memory subsystem.

The NUMA placement of a VM in a hypervisor node consists of mapping (pinning) each virtual
thread into a physical server thread, considering the overall usage of the server, the virtual
topology of the VM as well as its memory and PCI passthrough requirements.

Requirements and Specifications

Virtual CPU Topology Definition

The most basic configuration is just to define the number of vCPU (virtual CPU) and the amount
of memory of the VM. In this case the guest OS will be configured with VCPU sockets of 1 core
and 1 thread each. A more detailed topology can be defined by providing a custom number of
sockets, cores and threads for a given number of vCPUs.

For example a VM with 2 sockets and 2 cores per sockets and 2 threads per core is defined by
the VM template shown in Figure 2.11.

VCPU = 8
MEMORY = 1024

TOPOLOGY = [SOCKETS = 2 , CORES = 2 , THREADS = 2]

Figure 2.11. Definition of a VM with 2 sockets, 2 cores per socket and 2 threads per core.
The total number of CPUs is 8 (2 x 2 x 2).

Additional details can be provided for the topology of your VM by defining the placement of
the sockets (NUMA nodes) into the hypervisor NUMA nodes. In this scenario each VM socket
will be exposed to the guest OS as a separated NUMA node with its own local memory. This
behavior is configured by setting a specific PIN_POLICY as explained below.

Version 1.0 31 July 2020 Page 30 of 69

ONEedge - 880412 D3.1. Software Report

Some applications may need an asymmetric NUMA configuration, i.e. not distributing the VM
resources evenly across the nodes. You can define each node configuration by manually setting
the NUMA_NODE attribute. See the Data Model section below.

CPU and NUMA Pinning

When a VM needs to expose the NUMA topology to the guest a pinning policy needs to be
defined to map each virtual NUMA node resource (memory and vCPUs) onto the hypervisor
nodes. OpenNebula can work with three different policies:

● CORE: each vCPU is assigned to a whole hypervisor core. No other threads in that core
will be used. This policy can be useful to isolate the VM workload for security reasons.

● THREAD: each vCPU is assigned to a hypervisor CPU thread.

● SHARED: the VM is assigned a set of the hypervisor CPUS shared by all the VM vCPUs.

VM memory is assigned to the closet hypervisor NUMA node where the vCPUs are pinned to,
trying to prioritize local memory accesses.

When using a pinning policy the scheduler can automatically pick the number of cores and
threads of the virtual topology. OpenNebula will try to optimize the VM performance by
selecting the threads per core according to the following algorithm:

● For the CORE pin policy the number of THREADS is set to 1.

● Prefer as close as possible to the hardware configuration of the host and so be power
of 2.

● The threads per core will not exceed that of the hypervisor.

PCI Passthrough

The scheduling process is slightly modified when a pinned VM includes PCI passthrough
devices. In this case the NUMA nodes where the PCI devices are attached to, are prioritized to
pin the VM vCPUs and memory to speed-up I/O operations.

Open vSwitch with DPDK

Another important aspect to optimize the performance of NFVs is the ability to use optimized
dataplanes, like DPDK. When using the DPDK backend, the OpenNebula drivers have been
extended to automatically configure the bridges and ports accordingly. DPDK bridge type can
be enabled in the regular OpenvSwitch network drivers in oned.conf.

Architecture and Components

No new components were needed to implement the NUMA topology. However, the following
existing modules have been extended:

● OpenNebula core daemon, to add support for the new attributes for VMs and hosts.
OpenNebula core checks, and tracks the allocation of NUMA resources on the hosts.

● Scheduler. Implements the NUMA allocation policies described above. It also checks the
capacity and availability of hugepages.

● Monitor Probes were added to gather the NUMA topology of the host.

Version 1.0 31 July 2020 Page 31 of 69

ONEedge - 880412 D3.1. Software Report

Data Model

The Virtual Machine templates can include the TOPOLOGY attribute to specify the VM NUMA
topology. Table 2.9 shows the attributes that can be set to define it.

TOPOLOGY Meaning

PIN_POLICY vCPU pinning preference: CORE, THREAD, SHARED, NONE

SOCKETS Number of sockets or NUMA nodes

CORES Number of cores per node

THREADS Number of threads per core

HUGEPAGE_SIZE Size of the hugepages (MB). If not defined no hugepages will be used

MEMORY_ACCESS Control if the memory is to be mapped shared or private

Table 2.9. Topology attributes and their meaning

The host data model has also been extended to support the NUMA attributes. See Table 2.10
for more details.

ATTRIBUTE Meaning

PIN_POLICY ● NONE Use numad for placement, VMs are not pinned to any CPU
● PINNED Allocate NUMA nodes and pin vCPU and MEMORY

HUGEPAGE ● NODE_ID of the NUMA cell for the hugepage allocation
● SIZE Kb of the pages
● PAGES total pages available
● FREE pages

MEMORY_NODE ● NODE_ID of the node
● TOTAL total memory in the node
● FREE free memory in the node
● USED used memory in the node
● DISTANCE distance vector to other nodes.

CORE ● NODE_ID of the NUMA cell where the CPU core lives
● ID of the CPU core
● CPUS IDs of thread siblings in the core

Table 2.10. NUMA attributes in the host and their meaning

An example of the NUMA attributes for a host is shown in Figure 2.12. It corresponds to a Host
with 1 socket, 4 cores and 2 threads per core. Hugepages of 2M and 1GB have been defined in
the system.

HUGEPAGE = [NODE_ID = "0", SIZE = "2048", PAGES = "0", FREE = "0"]
HUGEPAGE = [NODE_ID = "0", SIZE = "1048576", PAGES = "0", FREE = "0"]

Version 1.0 31 July 2020 Page 32 of 69

ONEedge - 880412 D3.1. Software Report

CORE = [NODE_ID = "0", ID = "3", CPUS = "3,7"]
CORE = [NODE_ID = "0", ID = "1", CPUS = "1,5"]
CORE = [NODE_ID = "0", ID = "2", CPUS = "2,6"]
CORE = [NODE_ID = "0", ID = "0", CPUS = "0,4"]
MEMORY_NODE = [NODE_ID = "0", TOTAL = "7992892", FREE = "347944", USED = "7644948", DISTANCE
= "0"]

Figure 2.12. Example of the NUMA attributes for a host

API and Interfaces

System APIs were not needed to be extended, the same API calls to manage VMs and hosts can
handle the NUMA extensions. In terms of the configuration interface the oned.conf file
includes a new restricted attribute to restrict the access to the PIN_POLICY attribute.

The command line tool shows the information about the NUMA usage and pinning information.
The onehost command includes the NUMA characteristics of the host as well as the current
usage, see Figure 2.13.

$ onehost show 0
...

NUMA NODES

 ID CORES USED FREE
 0 XX XX -- -- 4 4

NUMA MEMORY

 NODE_ID TOTAL USED_REAL USED_ALLOCATED FREE
 0 7.6G 6.8G 1024M 845.1M

NUMA HUGEPAGES

 NODE_ID SIZE TOTAL FREE USED
 0 2M 2048 1536 512
 0 1024M 0 0 0
...

Figure 2.13. NUMA information in the output of onehost command

Equivalently the onevm command shows the topology of the VM, see Figure 2.14.

$ onevm show 0
...
NUMA NODES

 ID CPUS MEMORY TOTAL_CPUS
 0 0,4 512M 2
 0 1,5 512M 2

TOPOLOGY

NUMA_NODES CORES SOCKETS THREADS
 2 2 1 2

Figure 2.14. NUMA information in the output of onevm command

Version 1.0 31 July 2020 Page 33 of 69

ONEedge - 880412 D3.1. Software Report

Finally the Sunstone interface has been also updated to include the NUMA topology and usage
of hosts and Virtual Machines, see Figure 2.15 for an example.

Figure 2.15. NUMA information panel as shown in Sunstone

Version 1.0 31 July 2020 Page 34 of 69

ONEedge - 880412 D3.1. Software Report

[SR2.8] Complete Service Flows

Description

OneFlow core has been re-written to improve:

● Scalability, so now it supports a large number of running services at the same time.

● Response time, the response time has been hugely reduced, due to the use of
asynchronous update mechanism to update the VM status.

Additionally, Flow description has been extended to include the ability to co-allocate networks
together with the service VM. All the VMs that belong to the service can communicate with
each other using these virtual networks that are automatically deployed. Also, when the service
is destroyed, virtual networks are also destroyed, everything is managed together.

Finally, the ability to add custom attributes to the VMs that are deployed has been added. So
now, users can choose some custom attributes that are passed to the VM when the service is
deployed. These custom attributes can be used inside the VM to make some extra
configuration steps.

Requirements and Specifications

Network creation

A Service Template can define three different dynamic network modes, that determine how
the networks will be used:

● An existing Virtual Network can be used, VMs in the role will just take a lease from that
network. This method is used for networks with a predefined address set (e.g. public
IPs).

{ "networks_values" : [{ "Private" :{ "id" : "0" }}]}

● Create a network reservation, in this case it will take the existing network and create a
reservation for the service. The name of the reservation and the size in the input dialog
must be specified. This method is used to allocate a pool of IPs for the service.

{ "networks_values" :[{ "Private" :{ "reserve_from" : "0" , "extra" : "" NAME = RESERVATION \ nSIZE = 5 "" }}]}

● Create a network instantiating a network template. In this case as an extra parameter
the address range to create may need to be specified, depending on the selected
template. This is useful for service private VLAN for internal service communication.

{ "networks_values" : [{ "Private" :{ "template_id" : "0" , "extra" : "AR=[IP=192.168.122.10, SIZE=10,
TYPE=IP4]" }}]}

Version 1.0 31 July 2020 Page 35 of 69

ONEedge - 880412 D3.1. Software Report

Response time comparison

The response time has been hugely reduced. There is a comparison below, with times from
5.10.2 (before the improvement) and 5.12.0 (after the improvement):

1) OpenNebula 5.10.2

● Deploy (~1 minute)

11:15:26 [I]: [SER] New state: DEPLOYING

11:15:26 [I]: [ROL] Role Master new state: DEPLOYING

11:15:57 [I]: [ROL] Role Master new state: RUNNING

11:15:57 [I]: [ROL] Role Slave new state: DEPLOYING

11:16:27 [I]: [ROL] Role Slave new state: RUNNING

11:16:27 [I]: [SER] New state: RUNNING

● Scale (~1 minute 20 seconds)

11:24:10 [I]: [ROL] Role Master scaling down from 2 to 1 nodes

11:24:10 [I]: [ROL] Role Master new state: SCALING

11:24:10 [I]: [SER] New state: SCALING

11:25:03 [I]: [ROL] Role Master new state: COOLDOWN

11:25:03 [I]: [SER] New state: COOLDOWN

11:25:33 [I]: [ROL] Role Master new state: RUNNING

11:25:33 [I]: [SER] New state: RUNNING

Note: cooldown takes 10 seconds, so real time is 1 minute and 10 seconds.

● Warning (23 seconds)

12:30:18 [Z0][DiM][D]: Powering off VM 1

12:30:41 [I]: [ROL] Role Slave new state: WARNING

12:30:41 [I]: [SER] New state: WARNING

2) OpenNebula 5.12.0

● Deploy (11 seconds)

11:47:09 [I]: [SER] New state: DEPLOYING

11:47:09 [I]: [ROL] Role Master new state: DEPLOYING

11:47:15 [I]: [ROL] Role Master new state: RUNNING

11:47:15 [I]: [ROL] Role Slave new state: DEPLOYING

11:47:20 [I]: [ROL] Role Slave new state: RUNNING

11:47:20 [I]: [SER] New state: RUNNING

● Scale (15 seconds)

12:00:48 [I]: [ROL] Role Master scaling up from 1 to 2 nodes

12:00:48 [I]: [ROL] Role Master new state: SCALING

12:00:48 [I]: [SER] New state: SCALING

12:00:53 [I]: [SER] New state: COOLDOWN

12:00:53 [I]: [ROL] Role Master new state: COOLDOWN

12:01:03 [I]: [ROL] Role Master new state: RUNNING

12:01:03 [I]: [SER] New state: RUNNING

Note: cooldown takes 10 seconds, so real time is 5 seconds.

Version 1.0 31 July 2020 Page 36 of 69

ONEedge - 880412 D3.1. Software Report

● Warning (1 second)

12:07:01 [Z0][DiM][D]: Powering off VM 10

12:07:02 [I]: [SER] New state: WARNING

12:07:02 [I]: [ROL] Role Master new state: WARNING

Figure 2.16. Times comparison

Architecture and Components

Some of the components have been re-written and new ones have been created:

● Life cycle manager: this component has been completely re-written. Instead of
iterating over the service pool, it triggers asynchronous actions to perform the
operations.

● Event manager: this component is new. It is in charge of waiting for state changes,
when the state changes it notifies it to the LCM.

● Service watchdog: this component is new. It is in charge of checking the state of the
VM and notifies when the VM is not running. In this situation the service and role will
be in a warning state. When the situation is recovered, it will also notify so the service
and role can change their states.

● Service auto scaler: this component is new. It is in charge of checking the elasticity and
scheduled rules to apply them.

Architecture

The OneFlow is an API rest. The OneFlow server executes an initial check of the data received
and if everything is correct it calls the LCM. The LCM will read the service information and then
is going to send the actions to the event manager. This component will talk with OpenNebula

Version 1.0 31 July 2020 Page 37 of 69

ONEedge - 880412 D3.1. Software Report

and wait until states change. After that, it will notify the LCM. These operations will be
performed until all the roles are in the desired states. Figure 2.17 shows the deploy operation
diagram.

 Figure 2.17. Deploy operation diagram

Data Model

The information related with services is stored in JSON format. Table 2.11 shows attributes
that can be set in a Service template and Table 2.12 shows attributes that are available in a
service.

Attribute Meaning

Name Service template name

Deployment ● None : all roles are deployed at once
● Straight : roles are deployed following parent relationships

Description Description of what kind of service is going to be deployed

Roles Array of roles that are going to be deployed in the service, each role has:

● name : name of the role
● cardinality : number of VMs that are going to be deployed
● vm_template : virtual machine template ID to deploy
● min_vms : minimum number of VMs that the roles must have
● max_vms : maximum number of VMs that the roles can have
● shutdown_action : action to perform when undeploying the role

○ terminate
○ terminate-hard

● parents : array of parents roles
● elasticity_policies: rules to change service cardinality
● scheduled_policies : scheduled rules to change service cardinality

Shutdown_action Action to perform when undeploying the role:
● terminate
● terminate-hard

Version 1.0 31 July 2020 Page 38 of 69

ONEedge - 880412 D3.1. Software Report

Ready_status_gate If this is set to true, the roles are not considered as running until VMs
communicate to OneGate that they are ready

Networks Networks that are going to be created

Custom_attrs Custom attributes to pass to the VM when the template is instantiated

 Table 2.11. Service template attributes and their meaning

Attribute Meaning

Name Service name

Deployment ● None : all roles are deployed at once
● Straight : roles are deployed following parent relationships

Description Service description

Roles Array of service roles, each role has:

● name : name of the role
● cardinality : current number of VMs
● vm_template : virtual machine template ID
● min_vms : minimum number of VMs that the roles must have
● max_vms : maximum number of VMs that the roles can have
● shutdown_action : action to perform when undeploying the role

○ terminate
○ terminate-hard

● parents : array of parents roles
● elasticity_policies: rules to change service cardinality
● scheduled_policies : scheduled rules to change service cardinality
● vm_template_contents : information passed to VM
● state : role state, see Table 2.13 for more details
● cooldown: seconds to wait after scale operation
● nodes : array containing information about role VMs:

○ deploy_id: VM identifier
○ vm_info: hash containing basic information about the VM

Shutdown_action Action to perform when undeploying the role:
● terminate
● terminate-hard

Ready_status_gate If this is set to true, the roles are not considered as running until VMs
communicate to OneGate that they are ready

Networks networks that are going to be created

Networks_values chosen networks

Custom_attrs custom attributes to pass to the VM when the template is instantiated

Custom_attrs_values custom attributes values passed to the VM

State service state, see Table 2.13 for more details

Log array of service logging events

 Table 2.12. Service attributes and their meaning

Version 1.0 31 July 2020 Page 39 of 69

ONEedge - 880412 D3.1. Software Report

State Name Meaning

0 PENDING Service/role is waiting to be deployed by the server

1 DEPLOYING Service/role is being deployed, this means, VM are being deployed
by OpenNebula

2 RUNNING Service/role is running, this means all the VMs are in running state

3 UNDEPLOYING Service/role is being undeployed, so VMs and virtual networks are
going to be destroyed

4 WARNING Some of the VMs are in a not running state

5 DONE Service and roles are deleted

6 FAILED_UNDEPLOYING Service/role failed to undeploy

7 FAILED_DEPLOYING Service/role failed to deploy

8 SCALING Service/role is scaling UP/DOWN, this means, cardinality is being
adjusted

9 FAILED_SCALING Service/role failed to scale

10 COOLDOWN Service/role is in waiting cooldown seconds after scale operation

 Table 2.13. Service and role states

An example of service template can be checked below:

{
 "name": "TestLab",
 "deployment": "straight",
 "description": "",
 "roles": [
 {
 "name": "frontend",
 "cardinality": 1,
 "vm_template": 127,
 "elasticity_policies": [
],
 "scheduled_policies": [
]
 },
 {
 "name": "worker",
 "cardinality": 1,
 "vm_template": 120,
 "elasticity_policies": [
],
 "scheduled_policies": [
]
 }
],
 "ready_status_gate": false,
 "networks": {
 },
 "custom_attrs": {
 }
}

 Figure 2.18. Service template example

Version 1.0 31 July 2020 Page 40 of 69

ONEedge - 880412 D3.1. Software Report

API and Interfaces

API

The API remains untouched.

CLI

The CLI has been re-written, to follow command/helper pattern. The command
oneflow-template has been adapted to read network and custom attributes information. The
oneflow list command has been updated to show colored state and also to fit the terminal
width.

Sunstone

The tab related with service template definition has been redesigned to be able to choose the
networks and attributes, Figure 2.19 shows a screenshot of the tab:

Version 1.0 31 July 2020 Page 41 of 69

ONEedge - 880412 D3.1. Software Report

 Figure 2.19. Service template network and custom attributes configuration

Template instantiation dialog has also been redesigned to be able to choose virtual networks
and custom attributes, Figure 2.20 shows a screenshot of the tab:

Version 1.0 31 July 2020 Page 42 of 69

ONEedge - 880412 D3.1. Software Report

 Figure 2.20. Service template instantiation dialog

Configuration file

The main configuration file is located /etc/one/oneflow-server.conf.

The following new attributes have been added:

● wait_timeout: default timeout in seconds to wait VMs to report different states

● autoscaler_interval: time in seconds between each time scale rules are evaluated

The following attributes have been removed from:

● lcm_interval: time in seconds between Life Cycle Manager steps.

Version 1.0 31 July 2020 Page 43 of 69

ONEedge - 880412 D3.1. Software Report

[SR2.9] Web UI extensions

The web extension task is a horizontal development task. Each SR includes in section API and
Interfaces a description of the modification to the web UI to accommodate the new
functionality. Note that these extensions do not apply to all SR.

Version 1.0 31 July 2020 Page 44 of 69

ONEedge - 880412 D3.1. Software Report

3. Edge Provider Selection (CPNT3)

[SR3.4] Driver Maintenance Process

Description

The Amazon EC2 and Packet drivers from the Edge Infrastructure Provision component drivers
lay the basis to build an acceptance and certification process as well as the needed testing
framework and documentation.

Requirements and Specification

The provision driver communicates with the remote infrastructure provider to allocate and
control new resources. These resources are later added into the OpenNebula as virtualization
hosts. There are several benefits of this approach over the traditional, more decoupled hybrid
solution that involves using the provider cloud API. However, one of them stands out among
the rest; it is the ability to move offline workloads between your local and rented resources.

In this first cycle the development of the Amazon EC2 and Packet drivers allows to partially
address the following requirements:

● Improve integration guides for host, network and IPAM drivers.

● Develop driver architecture and ready-to-use driver skeletons that eases development.

● Define an acceptance and certification process for each driver type.

● Create development and process guides to foster development within the ecosystem.

Architecture and Components

The OneProvision infrastructure drivers allow the deployment of a fully operational
OpenNebula cluster in a remote provider. Each new provision is described by the provision
template, a YAML document specifying the OpenNebula resources to add (cluster, hosts,
datastores, virtual networks), physical resources to provision from the remote infrastructure
provider, the connection parameters for SSH and configuration steps (playbook) with tunables.
At the end of the process, there is a new cluster available in OpenNebula.

The sequence diagram below represents a full lifecycle of a remote resource, depicting the
flow between the OneProvision component and the remote infrastructure provider (Amazon
EC2 in this case) using the Infrastructure Provision drivers, and the OneProvision component
and OpenNebula core using XMLRPC client wrappers.

Version 1.0 31 July 2020 Page 45 of 69

http://docs.opennebula.io/5.12/advanced_components/ddc/template/template.html#ddc-provision-template
http://docs.opennebula.io/5.12/advanced_components/ddc/template/template.html#ddc-provision-template

ONEedge - 880412 D3.1. Software Report

Figure 3.1. Sequence diagram for OneProvision drivers

Data Model

The remote host representation in OpenNebula holds special attributes in the resource
template storing the values needed to correctly manage the remote host.

An XML example of the representation can be found in Figure 3.2.

<PROVISION>

 <AMI><![CDATA[ami-66a7871c]]></AMI>

 <DEPLOY_ID><![CDATA[i-0275bfc0bc1d3787f]]></DEPLOY_ID>

 <EC2_ACCESS><![CDATA[chNAtXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXQc=]]></EC2_ACCESS>

 <EC2_SECRET><![CDATA[YWep/0QwXXXXXXXXXXXXXXXXXXXXXXXXMxopZ]]></EC2_SECRET>

 <HOSTNAME><![CDATA[centos-host]]></HOSTNAME>

 <INSTANCETYPE><![CDATA[t2.nano]]></INSTANCETYPE>

 <NAME><![CDATA[testing_provision]]></NAME>

 <PROVISION_ID><![CDATA[6436cfbc-d266-49ce-9d4b-2fc4db1297a3]]></PROVISION_ID>

 <REGION_NAME><![CDATA[us-east-1]]></REGION_NAME>

 <SECURITYGROUPSIDS><![CDATA[sg-0651cef55568e8f55]]></SECURITYGROUPSIDS>

 <SUBNETID><![CDATA[subnet-093c9f349a22f2571]]></SUBNETID>

</PROVISION>

<PROVISION_CONFIGURATION_BASE64><![CDATA[LS0tCm9wZW5uZWJ1bGFfbm9kZV9rdm1fcGFyYW1fbmVzdGVkOiBm

YWxzZQo=]]></PROVISION_CONFIGURATION_BASE64>

Version 1.0 31 July 2020 Page 46 of 69

ONEedge - 880412 D3.1. Software Report

<PROVISION_CONFIGURATION_STATUS><![CDATA[configured]]></PROVISION_CONFIGURATION_STATUS>

<PROVISION_CONNECTION>

 <PRIVATE_KEY><![CDATA[/var/lib/one/.ssh/id_rsa]]></PRIVATE_KEY>

 <PUBLIC_KEY><![CDATA[/var/lib/one/.ssh/id_rsa.pub]]></PUBLIC_KEY>

 <REMOTE_PORT><![CDATA[22]]></REMOTE_PORT>

 <REMOTE_USER><![CDATA[root]]></REMOTE_USER>

</PROVISION_CONNECTION>

Figure 3.2. XML Representation of a remote node

An exhaustive list of the attributes that describes an EC2 provision are described in Table 3.1.

Attribute Meaning

AMI Identifier of the Amazon EC2 bare metal template

DEPLOY_ID Identifier of the Amazon EC2 bare metal instance

EC2_ACCESS Access key for EC2 account

EC2_SECRET Secret key for EC2 account

HOSTNAME Name of the host in OpenNebula

INSTANCE_TYPE Type of the EC2 bare metal instance

NAME Name of the provision

PROVISION_ID Identifier of the provision

REGION_NAME Name of the EC2 region where the bare metal instance is
located

SECURITYGROUPSIDS Identifiers of the Security Groups in Amazon EC2 that applies
to this bare metal instance provision

SUBNETID Identifier of the subnet that contains this Amazon EC2 bare
metal instance

PROVISION_CONFIGURATION_BASE64 Information needed to configure the Amazon EC2 bare metal
instance as part of an OpenNebula cluster, encoded in
base64.

PROVISION_CONFIGURATION_STATUS The state of the configuration task over the Amazon EC2
bare metal instance

PRIVATE_KEY Path to private key to connect to the remote server using the
SSH protocol

PUBLIC_KEY Path to the SSH public key to authorize in the remote server

REMOTE_PORT Remote server’s SSH port

REMOTE_USER Remote server’s user account name

Table 3.1. Provision attributes semantics

Version 1.0 31 July 2020 Page 47 of 69

ONEedge - 880412 D3.1. Software Report

API and Interfaces

Each new edge infrastructure provider needs a set of provision drivers to claim compatibility
with OneProvision. These drivers are responsible for the creation and lifecycle management of
the bare metal instances that sustain the edge platforms.

The following table describes the API that each set of drivers needs to implement.

Driver
Name

Description Arguments Response

cancel Destroy a provision ● DEPLOY_ID: Provision
deployment ID

● HOST: Name of
OpenNebula host

● Success: -
● Failure: Error message

deploy Identifier of the Amazon
EC2 bare metal instance

DEPLOYMENT_FILE: where to
write the deployment file,
which contents come through
stdin

● Success: Deploy ID,
unique identification
from provider

● Failure: Error message

poll Get information about a
provisioned host

● DEPLOY_ID: Provision
deployment ID

● HOST: Name of
OpenNebula host

● Success: Output as for
poll action in the
Virtualization Driver

● Failure: Error message

reboot Orderly reboots a
provisioned host

● DEPLOY_ID: Provision
deployment ID

● HOST: Name of
OpenNebula host

● Success: -
● Failure: Error message

reset Hard reboots a
provisioned host

● DEPLOY_ID: Provision
deployment ID

● HOST: Name of
OpenNebula host

● Success: -
● Failure: Error message

shutdown Orderly shutdown a
provisioned host

● DEPLOY_ID: Provision
deployment ID

● HOST: Name of
OpenNebula host

● LCM_STATE: Emulated
LCM_STATE string

● Success: -
● Failure: Error message

Table 3.2. Provision drivers API

Version 1.0 31 July 2020 Page 48 of 69

ONEedge - 880412 D3.1. Software Report

4. Edge Infrastructure Provision and Deployment (CPNT4)

[SR4.1] Reliable Edge Resource Provision

Description

Provisioning tools were improved for better resilience to the errors by multi-staged handling of
error situations (called failover combinations). With this implementation users can combine
multiple types of options in case anything fails. This is very powerful as it allows users to deal
with more complex error situations. The error handling options were available in the previous
version of the provisioning tools, but now users can combine them. For example, users are able
to retry several times the failing configuration step of deployed hosts and in case of recurrent
failure, delete the provision and release the allocated hosts back to Edge provider as a next
failover step. All within a single command run.

For deployments which did not succeed and resources were left running on Edge location
outside the inventory of OpenNebula provisioning tools, the prototype of background cleaner
was developed and is still under testing and evaluation.

Requirements and Specifications

Failover Combinations

The new failover combinations for multi-staged error handling are available only in the CLI. This
improvement is implemented in a backward compatible way, so users of previous versions can
still use the same failover modes without combining it with others. All the fail modes can be
combined with each other, there is no restriction on that and also all the options related to
each fail mode are supported. Combination of failover modes is available both in interactive
and non-interactives runs.

Background Cleaner

Cleaner tool lists the running machines on Edge directly over Edge Provider’s API and
terminates those left running. As a prototype it does not (have to) distinguish between
resources in the OpenNebula evidence and orphaned ones and can clean everything. This is
going to be extended in next iteration to:

● identify resources without relation to the provisioned deployments (true orphaned
ones).

● cleanup also other resources than just virtual machines (e.g., IP ranges, persistent
disks).

● run automatically and periodically.

Providers supported by Edge provisioning tools must and are supported by the cleaner, i.e.
Packet and Amazon EC2. The tool also supports Azure for future use.

Architecture and Components

Failover Combinations

Version 1.0 31 July 2020 Page 49 of 69

ONEedge - 880412 D3.1. Software Report

This improvement does not create any new component, the existing CLI tools (oneprovision)
and provision backend have been modified to support this feature.

Users need to choose the failover options before running the command oneprovision to deploy
the infrastructure on Edge. In case of error, the provision backend will follow (from one to
another) the failover modes in the order they were specified by the user. These failover modes
will be processed until there are no more modes available or the issue is resolved. If the error
is persistent and there are no more failover modes available, the provisioning tools will
terminate with error and leave the infrastructure state as is. This can be used by users to check
and troubleshoot the problem.

 Figure 4.1. Sequence diagram of configuration process with recurrent failure

Figure 4.1 shows the sequence diagram of provision with failover combinations of retry and
cleanup. The configuration process of the host if failing, and provision tools chooses to retry
operation for 3 times. After 3 failures, the tooling continues with next cleanup failover mode.
I.e., it contacts the Edge Provider, un-deploys the host and terminates.

Background Cleaner

This functionality does not come as a fully featured component, but only as a stand-alone
script.

The Figure 4.2 shows the sequence diagram of interaction among cleaner tools and Edge
Providers.

Version 1.0 31 July 2020 Page 50 of 69

ONEedge - 880412 D3.1. Software Report

 Figure 4.2. Sequence diagram of cleanup process

Data Model

There is no special data model related to this improvement.

API and Interfaces

Failover Combinations

The main change has been done in the CLI tool oneprovision and its subcommand create. It
provides a new parameter to specify a group of failover modes as summarized in Table 4.1.

CLI PARAMETER DESCRIPTION

oneprovision create
--fail-modes [...]

Allows to specify comma separated list of multiple failover modes from:
● retry - retry the last failing operation
● cleanup - cleanup all changes (on Edge Provider and ONE) and

exit
● Skip - skip failing operation and continue with next one
● Fail - exit provision with error on failing operation

 Table 4.1. New command line options

Following Figure 4.3 shows a real example of provisioning CLI with multi-staged error handling
via failover modes. There are combined modes to retry and cleanup. This makes the provision
backend first retry the failing operation several times and at the end since the operation still
fails, it will clean up the infrastructure and delete all entities created so far.

Version 1.0 31 July 2020 Page 51 of 69

ONEedge - 880412 D3.1. Software Report

$ oneprovision create simple.yaml -d --batch --fail-modes retry,cleanup
2020-06-17 10:30:54 INFO : Creating provision objects
ERROR: Failed to create some resources
[one.vn.allocate] VN_MAD named "alias_sdnat" is not defined in oned.conf
ERROR: Failed to create some resources
[one.vn.allocate] VN_MAD named "alias_sdnat" is not defined in oned.conf
ERROR: Failed to create some resources
[one.vn.allocate] VN_MAD named "alias_sdnat" is not defined in oned.conf
ERROR: Failed to create some resources
[one.vn.allocate] VN_MAD named "alias_sdnat" is not defined in oned.conf
ERROR: Failed to create some resources
[one.vn.allocate] VN_MAD named "alias_sdnat" is not defined in oned.conf
2020-06-17 10:30:54 INFO : Deleting provision 5949d07f-eb06-4b0b-8e8c-60c29ff30bb1
2020-06-17 10:30:54 INFO : Undeploying hosts
2020-06-17 10:30:54 INFO : Deleting provision virtual objects
2020-06-17 10:30:54 INFO : Deleting provision objects

 Figure 4.3. Provision fail modes retry and cleanup

Background Cleaner

Cleaner script does not provide many options to adjust the execution (see Figure 4.4). Without
any provided parameter, it checks the running machines on Edge providers (as described in the
accompanying configuration file) and only shows a list of candidates for termination. If
executed with argument -f, it also terminates those candidates.

$./cloud_cleanup.rb --help
Cloud cleanup

 Usage:
 ./cloud_cleanup.rb [--config=<FILE>]
 ./cloud_cleanup.rb -f | --force
 ./cloud_cleanup.rb -h | --help

 Options:
 -h --help Show this screen
 -c --config=<FILE> Config file location [default: cloud_cleanup.yaml]
 -f --force Really clean, dry-run otherwise

 Figure 4.4. Cleaner script help with available command line options

Configuration of Edge providers to check and clean up is a static file with providers list, the
credentials for their API and types of entities to terminate (see Figure 4.5). This needs to be
improved in upcoming development iterations to use the information stored in the
OpenNebula (for existing provisions) now and in the past.

provider1:
 secret_url: http://localhost/secrets/p1.yaml
 delete:
 - instances

provider2:
 secret_url: http://localhost/secrets/p2.yaml
 delete:
 - instances

 Figure 4.5. Cloud providers configuration

Version 1.0 31 July 2020 Page 52 of 69

ONEedge - 880412 D3.1. Software Report

[SR4.2] Usability, Functionality and Scalability of Provision

Description

Provisioning tools to deploy virtualization clusters in the Edge datacenters were extended to
create more complete deployments in the EdgeNebula with new entities for end-users. Such
deployment can be created based on a combination of multiple provision descriptors within a
single deployment process. Also, can contain entities created for direct use by end users - e.g.,
virtual machine images and templates, multi-VM deployments descriptors.

This improvement allows users to deploy a ready-to-use infrastructure with just a single
deployment. Provision backend will create all the infrastructure resources in the remote
provider and then will create all the objects in OpenNebula. At the end, the user will be able to
instantiate a VM template with all the resources that have been deployed.

Requirements and Specifications

New Object Types

The provision descriptor and tooling is extended in order to create following new object types:

● Images

● Marketplace Appliances

● Virtual Machine Templates

● Virtual Network Templates

● Multi-VM (OneFlow) Service Templates

Object Owners

By default the objects are created under the identity (user and group owner) of the user which
triggers the provision. New options were added to specify different custom owners of each
entity. So the provision objects can be shared with other users in the cloud.

Asynchronous Provision

Some of the objects may take a while until they are created (e.g., download of a big image over
a slow network might significantly slow down the provision). The provision can create some
objects in newly introduced asynchronous mode. The provision will not wait for such objects to
be ready. All of these customizations are done in the deployment file in a user friendly way.

Architecture and Components

The provision backend has been extended to support these new objects. They are called virtual
objects, as they are created only in the OpenNebula (and are not the infrastructure objects like
hosts or datastores) and not on any remote provider. The objects are specified in the provision
template, which is a YAML formatted file with all the resources that have to be deployed during
provision.

The following flow is executed to deploy the provision:

1. The deployment file is read and validated.

Version 1.0 31 July 2020 Page 53 of 69

ONEedge - 880412 D3.1. Software Report

2. All the infrastructure objects are created in OpenNebula and in the remote provider, so
the backend will wait until the resources are ready in the provider.

3. Hosts will be configured using Ansible recipes.

4. When all the infrastructure is ready, the backend will start creating all the virtual
objects and will wait for them to be ready.

Data Model

Provision Template

Provision template has been extended to support the new objects. For each new object there is
a new section in the provision template, so the provision tool can distinguish and deploy them.
Following Figures 4.6 - 4.10 show the examples of snippets of provision templates for different
object types:

templates:
 - name: "test_template"
 memory: 1
 cpu: 1

Figure 4.6. Provision template for Virtual Machine Template

vntemplates:
 - name: "test_vntemplate"
 vn_mad: "bridge"
 ar:
 - ip: "10.0.0.1"
 size: 10
 type: "IP4"

Figure 4.7. Provision template for Virtual Network Template

images:
 - name: "test_image"
 ds_id: 1
 size: 2048

Figure 4.8. Provision template for Image

marketplaceapps:
 - appid: 238
 name: "test_image_2"
 dsid: 1

Figure 4.9. Provision template for Marketplace Appliance

flowtemplates:
 - name: "test_service"
 deployment: "straight"
 roles:
 - name: "frontend"
 vm_template: 0
 - name: "backend"
 vm_template: 1

Figure 4.10. Provision template for Multi-VM Service Template

Version 1.0 31 July 2020 Page 54 of 69

ONEedge - 880412 D3.1. Software Report

Enriched OpenNebula XML Objects Metadata

All objects created in the OpenNebula are represented as XML documents, with main fixed
structure and free form extensible TEMPLATE section which contains various essential
metadata about each object. Provision process injects into each created OpenNebula object a
unique identification of provision run during which the objects were created. This is used to
manage the provision as one entity, so when the provision is being destroyed, all the related
virtual objects are destroyed as well. Figure 4.11 shows a partial example of the Image XML
object with TEMPLATE section, which contains reference ID to the provision.

<TEMPLATE>
 <DEV_PREFIX><![CDATA[sd]]></DEV_PREFIX>
 <DS_ID><![CDATA[1]]></DS_ID>
 <PROVISION>
 <PROVISION_ID><![CDATA[953d632b-8c66-49b4-bd90-ffc45765bd60]]></PROVISION_ID>
 <WAIT><![CDATA[false]]></WAIT>
 </PROVISION>
 </TEMPLATE>

Figure 4.11. OpenNebula object template

API and Interfaces

New functionality needed to be implemented in provisioning tools to track and deal with newly
created objects, injected reference metadata, and mechanism to skip specific parts of
provision.

Provision XML Object

Provisioning tools returns a complete description of provision as an XML document. This
document needed to be extended to contain a list of newly created object types. Figure 4.12
shows an example of existing provision covering also Images.

<PROVISION>
 <ID>953d632b-8c66-49b4-bd90-ffc45765bd60</ID>
 <NAME>myprovision</NAME>
 <STATUS>pending</STATUS>
 <CLUSTERS>
 <ID>101</ID>
 </CLUSTERS>
 <DATASTORES>
 <ID>103</ID>
 <ID>102</ID>
 </DATASTORES>
 <HOSTS>
 <ID>2</ID>
 </HOSTS>
 <NETWORKS>
 <ID>1</ID>
 </NETWORKS>
 <IMAGES>
 <ID>1</ID>
 </IMAGES>
</PROVISION>

Figure 4.12. Provision in XML format

Version 1.0 31 July 2020 Page 55 of 69

ONEedge - 880412 D3.1. Software Report

New CLI parameters

New command line arguments for provisioning tools to skip infrastructure provision and/or
configuration were introduced. This is very useful in case a user only wants to deploy virtual
objects, not a real physical infrastructure. Table 4.2 describes the new CLI options.

CLI PARAMETER DESCRIPTION

oneprovision create
--skip-provision

Skips provision on remote Edge provider and configuration phase.
Only creates objects in OpenNebula.

oneprovision create
--skip-configuration

Provision hosts on remote Edge provider, but skips configuration phase.
Leaves hosts unconfigured (e.g., without KVM hypervisor).

 Table 4.2. New command line options

Version 1.0 31 July 2020 Page 56 of 69

ONEedge - 880412 D3.1. Software Report

[SR4.3] Provision Template for Reference Architectures

Description

Provision templates were extended with examples of complete deployment specifications of
fully usable clusters. The example specifications can be used by experienced cloud
administrators to easily create ready-to-use clusters with a single run of provisioning tools.

These templates are available for Packet and Amazon EC2 which are the only supported Edge
providers by OpenNebula now. Templates contain complete cluster specification with
everything needed, the only change that must be performed by the end administrator is to put
his own Edge provider’s account with credentials and uncomment and update hosts he wants
to deploy.

Requirements and Specifications

Complete Cluster Provision Templates

These templates are ready-to-use complete cluster templates with (commented) hosts,
datastores and virtual networks specific for each provider. They are expected to be run on
OpenNebula version 5.12 or higher, packaged and installed with OpenNebula into
/usr/share/one/oneprovision/examples on the front-end.

They have basic provision configuration with:

● Hosts - these hosts are commented in the template, and left up to the user to select
the required counts and sizing. The commented hosts contain examples for selecting
CentOS 7 and Ubuntu 18.04 LTS as base operating systems installed on the host.

● Datastores - necessary system and image datastores (to store image and running VMs
state).

● Virtual Networks - necessary virtual networks for various types of communications:

○ private-host-only-nat - for inter-VM host-only networking and NATed access to
public

○ private-host-only - for inter-VM host-only networking (only Packet)

○ private - for inter-VM private networking across physical hosts

○ public - for public networking over dedicated range of public IP addresses (only
Packet)

Places the cloud admin needs to update before using are clearly labeled and commented.

Architecture and Components

There is no relevant information in this section, the component itself remains untouched.

Data Model

The only introduced changes are the new provision template descriptors, which are the YAML
formatted documents. This section documents these templates at the state current for
OpenNebula 5.12.0 release.

Version 1.0 31 July 2020 Page 57 of 69

ONEedge - 880412 D3.1. Software Report

Packet Provision Template

Figure 4.13 shows the whole provision template for complete cluster on Packet Edge provider
with commented hosts, several datastores and virtual networks.

WARNING: You need to replace ***** values with your

own credentials for the particular provider. You need to

uncomment and update list of hosts to deploy based

on your requirements.

Ansible playbook to configure hosts

playbook: "static_vxlan"

Provision name to use in all resources

name: "PacketCluster"

Defaults sections with information related with Packet

defaults:

 provision:

 driver: "packet"

 packet_token: "**************************"

 packet_project: "************************"

 facility: "ams1"

 plan: "baremetal_0"

 os: "centos_7"

 configuration:

 iptables_masquerade_enabled: false # NAT breaks public networking

Hosts to be deployed in Packet and created in OpenNebula

hosts:

- reserved_cpu: "100"

im_mad: "kvm"

vm_mad: "kvm"

provision:

hostname: "centos-host"

os: "centos_7"

- reserved_cpu: "100"

im_mad: "kvm"

vm_mad: "kvm"

provision:

hostname: "ubuntu-host"

os: "ubuntu_18_04"

Datastores to be created in OpenNebula

datastores:

 - name: "<%= @name %>-image"

 ds_mad: "fs"
 tm_mad: "ssh"

Version 1.0 31 July 2020 Page 58 of 69

ONEedge - 880412 D3.1. Software Report

 - name: "<%= @name %>-system"
 type: "system_ds"
 tm_mad: "ssh"

Network to be created in OpenNebula
networks:
 - name: "<%= @name %>-private-host-only"
 vn_mad: "dummy"
 bridge: "br0"
 description: "Host-only private network"
 gateway: "192.168.150.1"
 ar:
 - ip: "192.168.150.2"
 size: "253"
 type: "IP4"

 - name: "<%= @name %>-private"
 vn_mad: "dummy"
 bridge: "vxbr100"
 mtu: "1450"
 description: "Private networking"
 ar:
 - ip: "192.168.160.2"
 size: "253"
 type: "IP4"

 - name: "<%= @name %>-public"
 vn_mad: "alias_sdnat"
 external: "yes"
 description: "Public networking"
 ar:
 - size: "4" # select number of public IPs
 type: "IP4"
 ipam_mad: "packet"
 packet_ip_type: "public_ipv4"
 facility: "ams1"
 packet_token: "********************************"
 packet_project: "******************************"

Figure 4.13. Provision template for Packet

Figure 4.14 shows a deployment diagram on Packet provider that can be achieved using the
deployment template in Figure 4.13. This is a deployment with two different CentOS 7 hosts
running, private connectivity between VMs on different hosts and public connectivity to those
VMs using the virtual networks that the provision creates.

Figure 4.14. Deployment diagram of cluster provisioned on Packet

Version 1.0 31 July 2020 Page 59 of 69

ONEedge - 880412 D3.1. Software Report

EC2 Provision Template

Figure 4.15 shows the whole provision template for complete cluster on Amazon EC2 provider
with commented hosts, several datastores and virtual networks.

WARNING: You need to replace ***** values with your
own credentials for the particular provider. You need to
uncomment and update list of hosts to deploy based
on your requirements.

Ansible playbook to configure hosts
playbook: "static_vxlan"

Provision name to use in all resources
name: "EC2Cluster"

Defaults sections with information related with Packet
defaults:
 provision:
 driver: "ec2"
 instancetype: "i3.metal"
 ec2_access: "***********************************"
 ec2_secret: "***********************************"
 region_name: "us-east-1"
 cloud_init: true

Hosts to be deployed in Packet and created in OpenNebula
hosts:
- reserved_cpu: "100"
im_mad: "kvm"
vm_mad: "kvm"
provision:
hostname: "centos-host"
ami: "ami-66a7871c"

- reserved_cpu: "100"
im_mad: "kvm"
vm_mad: "kvm"
provision:
hostname: "ubuntu-host"
ami: "ami-759bc50a" # (Ubuntu 16.04)

Datastores to be created in OpenNebula
datastores:
 - name: "<%= @name %>-image"
 ds_mad: "fs"
 tm_mad: "ssh"

 - name: "<%= @name %>-system"
 type: "system_ds"
 tm_mad: "ssh"

Network to be created in OpenNebula
networks:
 - name: "<%= @name %>-private-host-only-nat"
 vn_mad: "dummy"
 bridge: "br0"
 dns: "8.8.8.8 8.8.4.4"
 gateway: "192.168.150.1"
 description: "Host-only private network with NAT"

Version 1.0 31 July 2020 Page 60 of 69

ONEedge - 880412 D3.1. Software Report

 ar:
 - ip: "192.168.150.2"
 size: "253"
 type: "IP4"

 - name: "<%= @name %>-private"
 vn_mad: "dummy"
 bridge: "vxbr100"
 mtu: "1450"
 description: "Private networking"
 ar:
 - ip: "192.168.160.2"
 size: "253"
 type: "IP4"

Figure 4.15. Provision template for EC2

Figure 4.16 shows a deployment diagram on Amazon EC2 provider that can be achieved using
the deployment template in Figure 4.15. This is a deployment with two different CentOS 7
hosts running on EC2, private connectivity between VMs on different hosts and connectivity
from private to public places over NAT. This is the full deployment created by provisioning
tools.

Figure 4.16. Deployment diagram of cluster provisioned on Amazon EC2

API and Interfaces

There are no changes to report.

Version 1.0 31 July 2020 Page 61 of 69

ONEedge - 880412 D3.1. Software Report

5. Edge Apps Marketplace (CPNT5)

[SR5.2] Built-in Management of Application Containers Engine

Description

OpenNebula Kubernetes appliance provides an easy way to deploy a Kubernetes cluster. It
utilizes the already present functionality of VM contextualization but it is also able to leverage
OpenNebula’s OneFlow feature to dynamically scale the cluster’s nodes. Thanks to the VM and
Service templates it is possible to spawn new multi-node Kubernetes cluster instances on
demand with the simplicity of a click-of-the-button.

Kubernetes is the most used industry-standard orchestrator of application containers and thus
by virtue of this appliance OpenNebula now also has means to deploy such containers next to
the other virtualization offering.

The goal of this SR is to improve this OpenNebula and Kubernetes integration, enabling
elasticity of the OpenNebula managed Kubernetes cluster.

Requirements and Specifications

There is currently no special requirement for this appliance which would make it to deviate
from any other VM image. Although, the optional OneFlow and OneGate services of
OpenNebula must be configured and running to fully utilize the features of Kubernetes
appliance.

Architecture and Components

Currently Kubernetes appliance supports only a single master setup with zero to many worker
nodes. The master node is also always a worker node and so by deploying only one node this
node automatically becomes a single-node Kubernetes cluster still able to run containers.
Single node cluster can be always any time later extended by an arbitrary number of the worker
nodes and therefore grow the cluster without a need to redeploy it. Shrinking also works but it
is not graceful and so containers running on an affected node will be terminated.

Node scaling can be achieved either via instantiating a new VM with the correct set of
contextualization parameters or better by utilizing the OneFlow service.

OneFlow integration is a much more powerful construct which will be able to not only
dynamically shrink and grow the cluster but also ensure that the required number of nodes is
always present. Service must be created with these two roles:

● master

● worker

A master role must be configured as the parent role of the worker role and for the best
outcome the VMs should report READY via OneGate to signal they are fully functional and
ready.

A master node must be always present while worker nodes are dependent on it (parent
relationship) and will not spawn until master is up and ready (report READY). OneFlow service
will also provide all the credentials needed for worker nodes to be able to join the already
existing cluster. As a result, one has to only click on the button to deploy or to scale the cluster.
With the OneFlow integration there is no more a need for the tedious management of nodes
by hand and providing them with the correct contextualization.

Version 1.0 31 July 2020 Page 62 of 69

ONEedge - 880412 D3.1. Software Report

Figure 5.1. OpenNebula Kubernetes Service appliance

Data Model

Kubernetes appliance uses a concept called contextualization. Each instance is provisioned with
the set of environmental variables which are passed into the VM where one-context scripts will
take care of the actual setup and configuration based on the provided values. On top of the
usual context parameters shared by all VMs - Kubernetes appliance defines also these:

App Attribute Value and Meaning

ONEAPP_K8S_ADDRESS Kubernetes master node address or network (in CIDR format)

ONEAPP_K8S_TOKEN Kubernetes token - to join worker node to the cluster

ONEAPP_K8S_HASH Kubernetes hash - to join worker node to the cluster

ONEAPP_K8S_NODENAME Kubernetes master node name

ONEAPP_K8S_PORT Kubernetes API port on which nodes communicate (default 6443)

ONEAPP_K8S_PODS_NETWORK Kubernetes pods network - pods will have IP from this range
(default 10.244.0.0/16)

ONEAPP_K8S_ADMIN_USERNAME UI dashboard admin account - Kubernetes secret’s token is
prefixed with this name (default admin-user)

Table 5.1. Summary of contextualization from Marketplace documentation

Version 1.0 31 July 2020 Page 63 of 69

ONEedge - 880412 D3.1. Software Report

[SR5.3] Integration with Application Containers Marketplace

Description

OpenNebula Docker Hub integration provides access to Docker Hub official images. This 2

integration allows to easily import these Docker Hub images into an OpenNebula cloud. The
OpenNebula context packages are installed during the import process so once an image is
imported it’s fully prepared to be used.

The Docker Hub marketplace will also create a new VM template associated with the imported
image. This template can be customized by the user, e.g adding a kernel, tune parameter, etc…

Requirements and Specifications

In order to provide a smooth experience and with as little user intervention as possible the
imported images should be fully functional for several hypervisors and provide the same
interface as other OpenNebula images. This imposes the following requirements:

● Contextualization, container images should auto-configure using the standard context
procedure. This requires to automatically install context packages when importing a
Docker Hub image. Context allows container images to automatically configure its
networking, execute custom scripts upon boot or set up SSH keys.

● Boot process, container runs with the same kernel as the host. The resulting image
should be able to boot in any hypervisor so a functional init system and associated
services should be installed.

● The build process should be as compatible as possible with the standard container
management procedures preferably using docker tools.

The previous requirements ensure an integrated experience for the user as well as the ability
to use Docker Hub images in LXD, Qemu/KVM and Firecracker. The latter two VMM require to
provide a separate kernel image to boot the container, and register it in the Kernels & Files
Datastore in OpenNebula. The VM Templates must include this kernel file. As part of ONEedge
we provide pre-compiled kernels and configuration files as a reference for the users.

Architecture and Components

The integration of Docker Hub comprises the development of two different components:

● Marketplace drivers. The drivers are responsible for talking to Docker Hub API and
provide OpenNebula core daemon a list of available images.

● Datastore downloader, which is responsible for preparing a contextualized image
based on the docker container.

Once the container image is downloaded and built it can be deployed in any compatible
hypervisor. This process is outlined in Figure 5.2:

2 https://hub.docker.com

Version 1.0 31 July 2020 Page 64 of 69

https://hub.docker.com/

ONEedge - 880412 D3.1. Software Report

 Figure 5.2. Overview of the deployment process of images downloaded from Docker Hub

Marketplace Drivers

A datastore driver includes three actions:

● import - not implemented. Docker Hub is a public marketplace. An user cannot create
Marketplace Apps through OpenNebula.

● delete - not implemented. An user cannot delete apps from public Marketplaces.

● monitor - The monitor action generates a list of available images in Docker Hub. In
order to reduce the potential list of images the monitor script only gets official and
certified images. The list of images is obtained directly from the public API endpoint
and the driver generates a Marketplace App list based on this information. See the
Data Model section below for a detailed description of the generated data.

Datastore Downloader

The downloader is part of the Datastore drivers and is responsible for downloading images for
specific protocols. Container images uses a custom protocol that identifies them:

docker://<image>?size=<image_size>&filesystem=<fs_type>&format=raw&tag=<tag>&distro=<distro>

The different arguments for the custom docker URL are explained below:

● <image> - Docker Hub image name

● <image_size> - Resulting image size. (It must be greater than actual image size)

● <fs_type> - Filesystem type (ext4, ext3, ext2 or xfs)

Version 1.0 31 July 2020 Page 65 of 69

ONEedge - 880412 D3.1. Software Report

● <tag> - Image tag name (default latest)

● <distro> - Image distribution (Optional). OpenNebula finds out the image distribution
automatically by running the container and checking /etc/os-release file. If this
information is not available inside the container the distro argument has to be used.

The docker downloader performs the following actions:

1. Creates a docker file based on the selected container image. The docker file includes
the build instructions for the target image. It includes the installation of specific
distribution packages to include a functional init system (including basic services) as
well as the OpenNebula contextualization packages.

2. Builds a container based on the docker file using docker build command.

3. Export the resulting image as a tarball

4. Create an image file with the selected size and format and dump the contents of the
tarball in it.

The resulting image is ready and fully functional in an OpenNebula cloud. Note that using this
URL, a user can download non-official Docker Hub images.

Data Model

The Docker Hub integration uses the existing Marketplace Application data model. The specific
information for a container obtained is detailed in Table 5.2. The information is gathered
directly from the official API endpoint, https://hub.docker.com/v2/repositories/library/. The
rest of the App attributes are adapted or generated to fit with the serverless model used by
the integration with Firecracker (see SR2.1).

App Attribute Value and Meaning

NAME Name of the container as published in Docker Hub registry. This is the main key for
searching for an image.

MD5 MD5 is used to detect new versions or updates of a given image. In this case, as the
actual bits of the image are not available, the registration time is used to detect
any update.

REGTIME As provided by the API.

DESCRIPTION As provided by the API

FORMAT Images are stored in raw format

VERSION As there is no versioning in Docker Hub it is fixed to 1.0. Note that tags are directly
handled by the SOURCE attribute.

APPTEMPLATE Sets virtio as the default bus and configures a default command line for the Kernel.

Table 5.2. Information obtained from Docker Hub API

As an example Figure 5.3 shows the relevant data for the memcached container:

Version 1.0 31 July 2020 Page 66 of 69

https://hub.docker.com/v2/repositories/library/

ONEedge - 880412 D3.1. Software Report

MARKETPLACE APP 184 INFORMATION
ID : 184
NAME : memcached
TYPE : IMAGE
USER : oneadmin
GROUP : oneadmin
MARKETPLACE : DockerHub
STATE : rdy
LOCK : None

DETAILS
SOURCE : docker://memcached?size=2048&filesystem=ext4&format=raw
MD5 : 4f33d8eea858298427cfb4db3d760154
PUBLISHER :
REGISTER TIME : Fri Jun 12 00:00:00 2020
VERSION : 1.0
DESCRIPTION : Free & open source, high-performance, distributed memory object caching
system.
SIZE : 2G
ORIGIN_ID : -1
FORMAT : raw

IMPORT TEMPLATE
DRIVER="raw"
DEV_PREFIX="vd"

MARKETPLACE APP TEMPLATE
APPTEMPLATE64="RFJJVkVSPSJyYXciCkRFVl9QUkVGSVg9InZkIgo="
DESCRIPTION="Free & open source, high-performance, distributed memory object caching system."
IMPORT_ID="-1"
LINK="https://hub.docker.com/_/memcached"
PUBLISHER="hub.docker.com"
VERSION="1.0"
VMTEMPLATE64="...5pYz0xIgpd"

Figure 5.3. Example of the data for a MarketplaceApp from Docker Hub

API and Interfaces

No API additions where needed to integrate Docker Hub, as the existing APIs to interface other
MarketPlaces where general enough and simple adaptation to the data model where needed.
The configuration interface is also the same as other Marketplaces, i.e. based on specific
attributes in its template definition. The specific configuration values available are described in
Table 5.3.

App Attribute Value and Meaning

ENDPOINT For the Docker Hub API

IMAGE_SIZE_MB Default size for the images created from Docker Hub

FILESYSTEM Default FS (xfs, ext4…) for the images created from Docker Hub

FORMAT Default image format (raw, qcow2…)

FORMAT Images are stored in raw format

Table 5.3. Configuration attributes for Docker Hub marketplace

Version 1.0 31 July 2020 Page 67 of 69

ONEedge - 880412 D3.1. Software Report

Finally the Sunstone interface has been extended in the case of Docker Hub when importing a
container to present the user the tags available to that particular container, see Figure 5.4.

Figure 5.4. Tag selection in Sunstone while importing a container image

Version 1.0 31 July 2020 Page 68 of 69

ONEedge - 880412 D3.1. Software Report

[SR5.4] New Edge Applications Marketplace Entries

Kubernetes appliance in the OpenNebula marketplace has been updated (including minor
enhancements) to version 1.18.3. The updated appliance can add more nodes to the cluster at
any time using the OpenNebula contextualization process.

This allows for the deployment of helm charts thanks to Kubernetes. This, coupled with the
Docker Hub integration in SR5.3, renders software requirement SR5.4 as fully met. Please see
SR5.2 for the design of the Kubernetes appliance.

Version 1.0 31 July 2020 Page 69 of 69

