
 Enterprise Kubernetes Made Simple

 Version 1.2 – June 2024

 Abstract

 Application container technologies are becoming the de facto leading standard for packaging, deploying,
 and managing applications with increased levels of agility and efficiency. Kubernetes is a widely used tool
 for the orchestration of containers on clusters. OpenNebula supports deploying Kubernetes clusters
 through its OneKE virtual appliance. OneKE (OpenNebula Kubernetes Engine) is available in the
 OpenNebula Public Marketplace. It is an enterprise-grade, CNCF-certified Kubernetes distribution that
 simplifies the provisioning, operations, and lifecycle management of Kubernetes. OneKE makes it possible
 to run any type of containerized application on an OpenNebula cloud using a single toolset, whether on
 premises, on a public cloud, or at the edge.

 Contents

 1. An Overview of Containers

 2. What is OpenNebula?

 3. The OpenNebula Kubernetes Engine (OneKE)

 4. Using OneKE with OpenNebula

 6. Ready for a Test Drive?

 7. Conclusions

 Glossary

 BGP Border Gateway Protocol

 CMP Cloud Management Platform

 CNCF Cloud Native Computing Foundation

 CNI Container Network Interface

 CRD Custom Resource Definition

 HA High Availability

 K8s Kubernetes

 OS Operating System

 VIP Virtual IP

 VM Virtual Machine

 VNF Virtual Network Function

 Enterprise Kubernetes Made Simple

 1. An Overview of Containers

 The Container Revolution

 The past few years have seen a rapid evolution of information and communications technologies, which
 have dramatically changed the way information systems and applications are built. Software development
 has brought a slew of changes and revolutions, thanks to which organizations can now focus mainly on
 business applications. The key drivers of this shift have been (1) the ability to package and run applications
 anywhere regardless of the underlying computing architecture, and (2) the means of keeping applications
 isolated from each other in order to avoid security risks and interference during operations or maintenance
 processes.

 Keeping applications isolated on the same host or cluster can be difficult, owing to the packages, libraries,
 and other software components that are normally required to run them. Hardware virtualization came as a
 solution to this problem, since it made it possible to keep applications isolated from each other on the same
 hardware, by using Virtual Machines. Packaging an application within a VM also allowed it to run on any
 infrastructure that supported virtualization, which provided a lot of flexibility to the whole concept.
 However, Virtual Machines come with some serious limitations: moving them around is not that easy since
 they are typically quite heavy and there are always difficulties associated with maintaining and upgrading
 applications running within a VM.

 In recent years, we have all witnessed how container technologies have revolutionized the way enterprise
 and distributed applications are being developed and deployed. Containers clearly offer a more portable
 and flexible way of packaging, maintaining, and running applications. They allow admins to deploy, move,
 and replicate workloads more quickly and easily than using Virtual Machines. While containers as a concept
 have been around for a while, Docker was the technology that introduced several crucial changes to the
 existing container technology, making containers more portable and flexible to use. This resulted in a
 turning point towards the adoption of containerization and microservices in software development (e.g.
 cloud-native development).

 Docker gave us an easy way to create container-based applications and to package them in portable images
 containing the specifications for the software components the container would run. Docker’s technology
 brought cloud-like flexibility to any infrastructure capable of running containers: its container image tools
 allowed developers to build libraries of images, compose applications from multiple images and launch
 those containers and applications on local and remote infrastructures alike.

 Orchestrating Containers

 Nowadays, many companies have embraced a cloud-native paradigm in developing applications, and have
 shifted from a “monolithic” approach to a microservice approach. While deploying a single container can be
 an easy task, things get a bit more complicated when deploying multi-container applications on distributed
 hosts, since in these cases a Docker Engine alone is not enough. This is where container orchestrators (like
 Kubernetes or Docker Swarm) play an important role in scheduling containers to run on different servers,
 moving containers to a new host when the host becomes unhealthy, restarting containers when they fail,
 managing overlay networks to allow containers on different hosts to communicate, orchestrating storage
 to provide persistent volumes to stateful applications, and so on.

 However, container technologies (e.g. Docker, Kubernetes) also come with some serious limitations, such as
 security (application containers share the kernel OS) and multi-tenant environments . In order to provide a
 multi-tenant and secure environment to deploy containerized applications, one has to provision different
 “virtual environments” to each user or group of users, typically by deploying several isolated Kubernetes

 Version 1.2 June 2024 Page 2 of 11

 Enterprise Kubernetes Made Simple

 clusters on top of a Cloud Management Platform. The CMP is then responsible for managing and
 orchestrating the underlying virtual resources (i.e. Virtual Machines, virtual networks and storage) that are
 used by the different Kubernetes deployments in charge of scheduling application containers within those
 isolated environments.

 Why Kubernetes on OpenNebula?

 OpenNebula incorporates OneKE , OpenNebula’s Kubernetes management solution. In less than 5 minutes,
 you can configure and deploy a High Availability Kubernetes cluster, integrated with persistent storage
 solutions for stateful applications. OneKE simplifies Kubernetes management across the entire lifecycle,
 provides a consistent and secure experience from the datacenter to the edge, and fast-tracks your way to
 production-ready Kubernetes with push-button simplicity while preserving a native user experience.

 Automated Multicluster
 Operations

 Centralized Management for
 All Workloads

 Kubernetes as a Service

 Simplify operations and automate
 lifecycle management of

 large-scale, multicluster K8s
 environments, and keep your
 workloads properly isolated

 Encompass K8s clusters within
 other virtualized workloads using a

 single control layer to reduce
 complexity, consumption and

 operating costs

 Build a multi-tenant self-service
 environment for the execution of
 K8s clusters on a shared physical

 infrastructure

 Enhanced Security
 Fast Deployment on Any

 Infrastructure
 No Provider Lock-in

 Enhance security thanks to the
 additional layer provided by

 hardware virtualization to isolate
 resources pools on the same host

 Automatically deploy in minutes
 and manage multiple K8s clusters

 across on-premises, edge, and
 cloud locations to enable

 large-scale container orchestration

 Deliver a native K8s user
 experience with open APIs

 anywhere, with the configuration
 that you want and following the

 same process

 Version 1.2 June 2024 Page 3 of 11

 Enterprise Kubernetes Made Simple

 2. What is OpenNebula?

 OpenNebula is a simple, but powerful, open source solution to build and manage Enterprise Clouds and 1

 Edge environments . It combines virtualization and container technologies with multi-tenancy, automatic
 provision, and elasticity to offer on-demand applications and services. It provides a single, feature-rich and
 flexible platform with unified management of IT infrastructure and applications that avoids vendor
 lock-in and reduces complexity, resource consumption, and operational costs .

 OpenNebula manages:

 ● An y Application : Combine containerized applications from Kubernetes with Virtual Machine
 workloads in a common shared environment to offer the best of both worlds: mature virtualization
 technology and orchestration of application containers.

 ● Any Infrastructure : Open cloud architecture to orchestrate compute, storage, and networking
 driven by software.

 ● Any Cloud : Unlock the power of a true hybrid, edge and multi-cloud platform by combining your
 private cloud with infrastructure resources from third-party virtual and bare-metal cloud providers
 such as AWS and Equinix Metal, and manage all cloud operations under a single control panel and
 interoperable layer.

 ● Any Time : Add and remove new clusters automatically in order to meet peaks in demand, or to
 implement fault tolerance strategies or latency requirements.

 OpenNebula provides the necessary tools for running containerized applications from Kubernetes while
 ensuring enterprise requirements for your DevOps practices. It helps organizations to easily embrace
 Hybrid and Edge Computing, allowing them to grow their Enterprise Cloud on demand with infrastructure
 resources from third-party Public Cloud and bare-metal providers such as AWS and Equinix Metal.
 This white paper describes how OpenNebula integrates with Kubernetes. If you are interested in an
 OpenNebula cloud fully based on open source platforms and technologies, please refer to our Open Cloud
 Reference Architecture .

 OpenNebula brings the provisioning tools and methods needed to dynamically grow a private cloud
 infrastructure that includes resources running on remote cloud and edge providers, enabling powerful, true
 hybrid and multi-cloud computing with support for all major clouds. This disaggregated cloud approach

 1 https://support.opennebula.pro/hc/en-us/articles/360036935791-OpenNebula-Overview-Datasheet

 Version 1.2 June 2024 Page 4 of 11

https://support.opennebula.pro/hc/en-us/articles/360036935791-OpenNebula-Overview-Datasheet
https://support.opennebula.pro/hc/en-us/articles/204210319-Open-Cloud-Reference-Architecture-White-Paper
https://support.opennebula.pro/hc/en-us/articles/204210319-Open-Cloud-Reference-Architecture-White-Paper

 Enterprise Kubernetes Made Simple

 allows for a seamless transition from centralized private clouds to distributed edge-like cloud
 environments. Companies can grow their private cloud with resources at cloud and edge datacenter
 locations, to meet peaks in demand or the latency and bandwidth needs of their workload. This approach
 involves a single management layer where organizations can continue using existing OpenNebula images
 and templates, keep complete control over their infrastructure, and avoid vendor lock-in.

 OpenNebula allows you to deploy a fully operational Edge Cluster in a remote provider, and to manage its 2

 full life cycle from provisioning and maintenance to unprovisioning. Each cloud or edge location (the
 “ provision ”) is defined as a group of physical hosts allocated from the remote bare-metal or virtual
 provider. They are fully configured with the user-selected hypervisor and enabled in the cloud stack,
 available for end-users.

 Recommended Configurations for Kubernetes Clusters:

 Use Case Hypervisor Edge Cluster

 Execute our CNCF-certified OneKE virtual appliance
 on VMs within cloud bare-metal servers .

 KVM Bare Metal

 3. The OpenNebula Kubernetes Engine (OneKE)

 OpenNebula supports deploying, managing and scaling Kubernetes clusters through its CNCF-certified
 OneKE virtual appliance, available for download from our OpenNebula Public Marketplace . OneKE is based
 on the Linux distribution Ubuntu and on SUSE Rancher’s Kubernetes distribution RKE2 . It allows you to
 build a multi-master Kubernetes cluster ready for production environments, and may be integrated with the
 Canal, Cilium, Calico or Multus Container Network Interface (CNI) plugins. It supports persistent volumes
 through Longhorn distributed storage and is integrated with the MetalLB load balancer for exposing
 Kubernetes services deployed in on-prem clusters. Additionally, it features an integrated HAProxy/Traefik
 solution to export HTTP/HTTPS apps via IngressRoute resources.

 ★ Based on open source components
 ★ Multi-master ready
 ★ Canal, Cilium, Calico and Multus CNI networking
 ★ Longhorn distributed storage
 ★ MetalLB or Cilium load balancers
 ★ Traefik Ingress Controller

 OneKE is implemented as a OneFlow Service . OneFlow allows the definition, execution and management of
 multi-tiered applications — so-called Services — composed of interconnected Virtual Machines with
 deployment dependencies between them. Each group of Virtual Machines is deployed and managed as a
 single entity (known as a “role”). OneKE has four different roles:

 ● VNF : Load balancer for Control-Plane and Ingress traffic
 ● Master : Control-Plane nodes (managing the etcd database, API server, controller manager and

 scheduler, along with the worker nodes)
 ● Worker : Nodes to run application workloads
 ● Storage : Dedicated storage nodes for persistent volume replicas

 2 https://support.opennebula.pro/hc/en-us/articles/360050302811-Edge-Cloud-Architecture-White-Paper

 Version 1.2 June 2024 Page 5 of 11

https://marketplace.opennebula.io/
https://docs.opennebula.io/6.4/installation_and_configuration/opennebula_services/oneflow.html

 Enterprise Kubernetes Made Simple

 By default, each OneKE role is preconfigured to deploy a single server to work as a non-Highly-Available
 (non-HA) cluster. However, enabling Virtual IP addresses (VIPs) during initial setup allows you to deploy
 with a configuration enabled for High-Availability (HA). Since OneFlow is able to implement elasticity
 policies, service can scale up or down depending on needs, in order to add or remove Virtual Machines
 (nodes). Each role can be scaled up to achieve a High Availability setup.

 3.1. High Availability

 A High Availability (HA) configuration aims to avoid a single point of failure for the Kubernetes cluster.
 Non-HA Kubernetes clusters are single-master clusters, in which a single master node controls all worker
 nodes and all of the essential components (the etcd database, API server, controller manager, scheduler,
 etc.). In this configuration, failure of the master node means the failure of the whole system: users lose the
 ability to create services and pods, all worker nodes fail and the whole cluster could be lost.

 An HA Kubernetes cluster is a multi-master cluster, which as its name implies uses multiple master nodes
 (usually three). Essential Kubernetes components are replicated across the multiple masters; if a master
 fails, the other masters keep the cluster up and running. Each master node runs its own copy of the API
 server, which can be used for load balancing among the master nodes. Each master also runs its own copy of
 the etcd database (which stores all data for the cluster), as well as its own controller manager (which
 handles replication), and its own scheduler (which schedules pods to nodes). Thus a multi-master
 configuration protects against an ample variety of failure scenarios, from the loss of a single worker node
 to the failure of essential components on a master node.

 Version 1.2 June 2024 Page 6 of 11

 Enterprise Kubernetes Made Simple

 To achieve high availability, OneKE uses the VNF appliance (Linux Virtual Server) as a Load Balancer for the
 HA Multi-Master Control Plane. VNF is based on Keepalived and can be scaled up to run on multiple VMs, in
 order to provide HA for the VNF itself. Users must provide the requisite VIP for the Control-Plane Endpoint
 when instantiating the OneKE appliance, by using the GUI or by editing the ONEAPP_VNF_LB0_IP context
 parameter.

 3.2. Storage

 OneKE simplifies deployment of highly-available persistent block storage in your Kubernetes
 environment—and ensures that it is fast and reliable—by integrating Longhorn . Longhorn is a lightweight,
 reliable, and powerful distributed block storage system for Kubernetes. It implements distributed block
 storage using containers and microservices, creates a dedicated storage controller for each block device
 volume, and synchronously replicates the volume across multiple replicas stored on multiple nodes. The
 storage controller and replicas are themselves orchestrated using Kubernetes.

 The OneKE storage node role can be scaled up to provide highly-available persistent block storage for
 Kubernetes pods.

 3.3. Load Balancer Service

 Pods or deployments can be exposed as a service of the type LoadBalancer, a more flexible alternative to
 the simple type NodePort. Our OneKE appliance offers the option of integrating the bare-metal load
 balancer MetalLB (or the BGP load balancers from Cilium, if Cilium is used as a CNI). By default, MetalLB is
 configured as an ARP/Layer 2 LoadBalancer, which means that the exposed LoadBalancer IP must be routed
 to one of the Kubernetes cluster nodes—which is not within the scope of the appliance itself, and so must
 be achieved by other means. MetalLB also supports BGP/Layer3 load balancing. After setting up the
 network for this dynamic routing protocol, the user can provide the appliance with the proper configuration
 by using contextualization parameters.

 Version 1.2 June 2024 Page 7 of 11

https://keepalived.readthedocs.io/en/latest/introduction.html
https://longhorn.io/

 Enterprise Kubernetes Made Simple

 3.4. Ingress Controller Service

 To expose HTTP and HTTPS routes from outside the Kubernetes cluster to services deployed within the
 cluster, OneKE provides an Ingress Controller based on Traefik . Traffic routing is controlled by rules defined
 on the Ingress resource. Traefik is exposed on a Kubernetes service of type NodePort. By default, the
 HAProxy instance (running on the leader VNF node) connects all worker nodes to ports 32080 and 32443,
 then forwards all traffic coming to HAProxy to ports 80 and 443 of the Traefik instance (running inside
 Kubernetes). An anti-affinity rule is applied to Traefik pods to minimize potential downtime during failures
 and upgrades. An Ingress Controller does not expose arbitrary ports or protocols; for exposing services
 other than HTTP or HTTPS to the internet, a LoadBalancer service is typically used instead..

 3.5. Upgrades

 To manage OneKE Kubernetes cluster upgrades, you can use Rancher’s RKE2
 system-upgrade-controller , a Kubernetes-native, general-purpose upgrade controller for nodes. It
 uses a Custom Resource Definition (CRD) known as the Plan to define upgrade policies and requirements.
 Upgrades are scheduled by a controller based on user-defined plans.

 On initial deployment, OneKE offers the option of enabling Longhorn, Traefik and MetalLB during cluster
 bootstrap.. These apps are deployed as add-ons using RKE2’s Helm Integration and official Helm charts.
 Add-ons can be easily upgraded using the Helm chart CRD that allows the user to override and patch helm
 charts.

 Version 1.2 June 2024 Page 8 of 11

https://traefik.io/traefik/

 Enterprise Kubernetes Made Simple

 4. Using OneKE with OpenNebula

 Running Your Kubernetes Clusters on OpenNebula

 When companies need complete container orchestration services
 based on Kubernetes for the deployment and management of
 containerized workflows, OpenNebula provides them with a simple
 “press-of-a-button” option to create and deploy a fully functional
 Kubernetes cluster, thanks to the OneKE virtual appliance available
 from the OpenNebula Public Marketplace .

 Our Virtual Appliance allows you to build a multi-master Kubernetes
 cluster ready for production environments, with the option of
 integrating with the Canal, Cilium, Calico or Multus CNI plugins. It
 supports persistent volumes through the CNCF Longhorn distributed
 storage, and offers the option of integrating with the MetalLB load
 balancer for exposing services deployed in on-prem clusters, or with
 Cilium BGP load balancers if Cilium is used as CNI. Lastly, it features an
 integrated HAProxy/Traefik solution to export HTTP/HTTPS apps via
 IngressRoute resources. It supports multiple contextualization
 parameters to adapt to your needs and required configuration. Using
 the OneFlow service enhances simplicity and versatility, enabling the
 appliance to function as an automatically managed multi-node cluster.

 This virtual appliance provides you with a Kubernetes cluster in which every node is managed by
 OpenNebula as a regular VM (and you can always add more nodes to the cluster at any time using OneFlow
 elasticity features), but OpenNebula does not manage containers or pods inside the Kubernetes cluster.
 The Kubernetes cluster exposes the Kubernetes API so that you can then access it via kubectl or
 Kubernetes’s UI dashboard to create pods, deployments, services, etc. Before deploying a Kubernetes
 Service, we recommend you to check out the associated documentation .

 Version 1.2 June 2024 Page 9 of 11

https://marketplace.opennebula.io/
https://marketplace.opennebula.io/
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://docs.opennebula.io/appliances/service/oneke.html

 Enterprise Kubernetes Made Simple

 The OneKE virtual appliance available from our Marketplace:

 ● Enables the provisioning of managed K8s clusters on demand with just one click. Easily deploys on
 different architectures (on-prem, edge, and cloud) for different users and applications

 ● Provides an auto-configured cluster with information exchanged over additional OpenNebula
 services (OneGate), managed as one entity (OneFlow)

 ● Provides elasticity features to scale up/down K8s cluster nodes for High Availability and/or
 workload needs

 ● Runs anywhere, with a built-in configuration of components (e.g. networking, storage) selected to
 handle restrictions on the end-user side

 Interested in deploying Kubernetes? 🚀

 6. Ready for a Test Drive?

 You can evaluate OpenNebula and build a cloud in just a few minutes by using miniONE , our deployment
 tool for quickly installing an OpenNebula Front-end inside a Virtual Machine or physical host, which you can
 then use to easily add remote resources.

 7. Conclusions

 OpenNebula introduces support for deploying, managing and scaling Kubernetes clusters through its
 CNCF-certified OneKE virtual appliance available from the OpenNebula Public Marketplace . If you require
 any assistance in adapting these technologies to your specific DevOps requirements, or in integrating any
 other Kubernetes distributions or container orchestration solutions in your organization, don’t hesitate to
 contact us —we look forward to helping you at any stage of your cloud computing journey.

 Version 1.2 June 2024 Page 10 of 11

https://www.youtube.com/watch?v=qQtU3-hNSM8
https://minione.opennebula.io/
https://minione.opennebula.io/
https://marketplace.opennebula.io/
https://opennebula.io/contact/

 Enterprise Kubernetes Made Simple

 LET US HELP YOU DESIGN, BUILD, AND OPERATE YOUR CLOUD

 CONSULTING & ENGINEERING

 Our experts will help you design,
 integrate, build, and operate an

 OpenNebula cloud infrastructure

 OPENNEBULA SUBSCRIPTION

 Get access to our Enterprise Edition
 and to our support and exclusive

 services for Corporate Users

 CLOUD DEPLOYMENT

 Focus on your business and let us
 take care of setting up your

 OpenNebula cloud infrastructure.

 Sign up for updates at OpenNebula.io/getupdated

 © OpenNebula Systems 2024. This document is not a contractual agreement between any person, company, vendor, or interested
 party, and OpenNebula Systems. This document is provided for informational purposes only and the information contained herein is
 subject to change without notice. OpenNebula is a trademark in the European Union and in the United States. All other trademarks
 are property of their respective owners. All other company and product names and logos may be the subject of intellectual
 property rights reserved by third parties.

 Rev1.2_20240601

 Version 1.2 June 2024 Page 11 of 11

https://opennebula.io/getupdated

